172 research outputs found

    An Alternative Natural Deduction for the Intuitionistic Propositional Logic

    Get PDF
    A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.This work is supported by the Ministary of Science and Technology of Serbia, grant number ON174026

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Radical anti-realism and substructural logics

    No full text
    We first provide the outline of an argument in favour of a radical form of anti-realism premised on the need to comply with two principles, implicitness and immanence, when trying to frame assertability-conditions. It follows from the first principle that one ought to avoid explicit bounding of the length of computations, as is the case for some strict finitists, and look for structural weakening instead. In order to comply with the principle of immanence, one ought to take into account the difference between being able to recognize a proof when presented with one and being able to produce one and thus avoid the idealization of our cognitive capacities that arise within Hilbert-style calculi. We then explore the possibility of weakening structural rules in order to comply with radical anti-realist strictures

    Constructive Logic with Strong Negation is a Substructural Logic. II

    Get PDF
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . The main result of Part I of this series [41] shows that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the setting of deductive systems to establish the definitional equivalence of the logics N and NFL ew . It follows from the definitional equivalence of these systems that constructive logic with strong negation is a substructural logi

    Labelled Natural Deduction for Substructural Logics

    No full text
    In this paper a uniform methodology to perform Natural Deduction over the family of linear, relevance and intuitionistic logics is proposed. The methodology follows the Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates declarative units { formulas labelled according to a labelling algebra. In the system de-scribed here, labels are either ground terms or variables of a given labelling language and inference rules manipulate formulas and labels simultaneously, generating (whenever necessary) constraints on the labels used in the rules. A set of natural deduction style inference rules is given, and the notion of a derivation is dened which associates a la-belled natural deduction style \structural derivation " with a set of generated constraints. Algorithmic procedures, based on a technique called resource abduction, are dened to solve the constraints generated within a derivation, and their termination conditions dis-cussed. A natural deduction derivation is correct with respect to a given substructural logic, if, under the condition that the algorithmic procedures terminate, the associated set of constraints is satised with respect to the underlying labelling algebra. This is shown by proving that the natural deduction system is sound and complete with respect to the LKE tableaux system [DG94].
    corecore