862 research outputs found

    Reinforcement learning-based thermal comfort control for vehicle cabins

    Get PDF

    Quantifying the Effects of HVAC Operation to Mitigate Aerosol Concentration in a Classroom using CFD

    Get PDF
    Heating, ventilation, and air conditioning (HVAC) is a complex mechanical system for the transition of air between outdoor and indoor areas. These systems are directly responsible for temperature, humidity, and air flow into any given space, thereby providing a level of comfort to those who live indoors. These systems account for 52 percent of U.S. energy consumption. When designing HVAC systems, indoor air quality (IAQ) is the main focus for achieving safe and clean air, such as in the case of airborne diseases. HVAC systems are responsible for the flow of air in indoor spaces and thereby expand the transmissible pathways of any given airborne virus. As a result, engineering and health organizations such as the World Health Organization (WHO), the Centers for Disease Control (CDC), and the American Society of Heating, Refrigeration, and Air conditioning Engineers (ASHRAE) have issued many guidelines. The focus of this study was to scientifically prove these guidelines and to determine whether the blanket statements provided by these organizations are supported by simulation results of various layouts in a university classroom setting. Computational fluid dynamics (CFD) is used as the foundation for software to determine the effects of mitigation strategies on the transmission of infectious aerosols. In this study, a university classroom located on South Dakota State University (SDSU) campus was modeled in computer-aided design (CAD) software and then imported into CFD software with a set of baseline physics conditions that would be used for various mitigation strategy. The mitigation strategies proposed in this study for the same university classroom are as follows: (1) airflow modification, (2) introduction of an acrylic barrier, (3) room layout adjustments, and (4) air redistribution techniques. Results show that the best and worst results are unique and there is no overlap between heating and cooling simulations sets. For instance, a bad result would be an overall increase in aerosols being distributed throughout the breathing zone of the room, whereas a good result would be a decrease in overall aerosols being distributed. Furthermore, there appears to be no one-size-fits-all solution throughout the calendar year, and each room under the influence of an HVAC system will have a unique strategy to mitigate the transmission of infectious aerosols

    ACTIVE NOISE CONTROL USING CARBON NANOTUBE THERMOPHONES: CASE STUDY FOR AN AUTOMOTIVE HVAC APPLICATION

    Get PDF
    The goal of this project was to reduce the overall noise levels emitted by the HVAC components in a vehicle’s cabin. More specifically, the feasibility of achieving this goal using two key technologies was investigated. The first of these technologies, Active Noise Control (ANC), is a noise attenuation technique that relies on destructive interference that “cancels” unwanted noise. Typically used in situations where physical constraints prevent passive attenuation techniques from being used, ANC is known for its high size-to-effectiveness ratio. This benefit cannot be gained without a cost however; the complexity of ANC systems is significantly higher than their passive counterparts. This is due to the signal processing and actuator designs required. These actuators often take the form of moving-coil loudspeakers which, while effective, are often bulky. Because of this they are difficult to “drop in” to an existing system. This is where the second technology comes in. Carbon Nanotube (CNT) Thermophones are solid-state speakers that operate by using rapid heat fluctuations to create sound. Called the “thermoacoustic effect,” (TE) the theory of this operating principle dates to the turn of the 20th century. Useful demonstration of TE did not occur until 2008, however, when researchers first developed the first CNT thermophones. The hallmark characteristics of these transducers are their small size and flexible nature. Compared to traditional loudspeakers they have a much smaller form factor and are more versatile in terms of where they can be placed in a cramped system. The marriage of CNT transducers to ANC technology shows promise in improving the application space and ease of installation of ANC systems. Getting these two to cooperate, however, is not without challenges. A case study for this union is presented here; the application space being the ducted environment of vehicle HVAC systems

    Inlet Gap Effect on Aerodynamics and Tonal Noise Generation of a Voluteless Centrifugal Fan

    Get PDF
    In this paper, the gap effects on the aerodynamics and tonal noise generation of voluteless centrifugal fans are studied based on different gap geometries. The study is motivated by the state of the art of this type of fan, for which the tonal noise generation due to the gap turbulence has not been addressed concerning the gap geometry, while a recent study reported that there is tonal noise at the blade passing frequency (BPF) from the gap turbulence. We simulate the configurations using a hybrid method coupling the improved delayed detached eddy simulation (IDDES) with Formulation 1A of Farassat. Our simulation shows regions with high vorticity magnitudes in the channel between two blades near the trailing edges close to the shroud. The turbulence renders a uniform pressure rise. By changing the gap design, the turbulent regions can be reduced. The configurations show a similar trend of the root mean square (RMS) pressure on the blade leading edge (BLE), largest at the shroud, and decays when the distance to the gap increases. The gap designs affect the amplitude of the RMS pressure, which is connected to the BPF. Spectral analysis is performed for the surface pressure fluctuations and the sound pressure upstream of the fan. The surface pressure fluctuations show that, for all cases, the regions with high energy are identical to the locations where the gap turbulence evolves and accounts for the impingement on the BLE. The amplitude of the tonal noise at the BPF differs between the cases

    Integrated Thermal Systems and Controls Modelling for AUTO Mode Simulation and Optimization

    Get PDF
    Virtual product development has become the preferred approach for vehicle A/C system development. The advantages provided by virtual modelling compared to traditional approach are accelerated development pace and reduced cost. The thesis focuses on virtual modelling of the A/C system on a SUV vehicle based on experimental data. A virtual model of the A/C system is constructed and calibrated in Simcenter Amesim. The model includes a vapour-compression refrigeration cycle and a cabin air model. The components are modelled and calibrated based on supplier data. The two thermal systems interact thermally at the evaporator level. The cabin air blower unit with a PI controller and a small DC motor is also modelled in MATLAB/Simulink. The virtual thermal model is able to simulate the cabin air temperature development during High Ambient AUTO mode drive cycle. The controlled DC motor system tracks reference speed to provide adequate air flow for the cabin. The virtual models can be used for A/C system and components performance analysis and optimization. The modelling process provides deeper understanding on thermal and control systems design
    • …
    corecore