2,506 research outputs found

    Investigation on reference frames and time systems in Multi-GNSS

    Get PDF
    Receivers able to track satellites belonging to different GNSSs (Global Navigation Satellite Systems) are available on the market. To compute coordinates and velocities it is necessary to identify all the elements that contribute to interoperability of the different GNSSs. For example the timescales kept by different GNSSs have to be aligned. Receiver-specific biases, or firmware-dependent biases, need to be calibrated. The reference frame used in the representation of the orbits must be unique. In this paper we address the interoperability issues from the standpoint of a Single Point Positioning (SPP) user, i.e., using pseudoranges and broadcast ephemeris. The biases between GNSSs timescales and receiver-dependent biases are analyzed for a set of 31 MGEX (Multi-GNSS Experiment) stations over a time span of more than three years. Time series of biases between timescales of GPS (Global Positioning System), GLONASS (Global Navigation Satellite System), Galileo, BeiDou, QZSS (Quasi-Zenith Satellite System), SBAS (Satellite Based Augmentation System) and NAVIC (Navigation with Indian Constellation) are investigated, in addition to the identification of events like discontinuity of receiver-dependent biases due to firmware updating. The GPS broadcast reference frame is shown to be aligned to the one (IGS14) realized by the precise ephemeris of CODE (Center for Orbit Determination in Europe) to within 0.1 m and 2 milliarcsec, with values dependent on whether IIR-A, IIR-B/M or IIF satellite blocks are considered. Larger offsets are observed for GLONASS, up to 1 m for GLONASS K satellites. For Galileo the alignment of the broadcast orbit to IGS14/CODE is again at the 0.1 m and several milliarcsec level, with the FOC (Full Operational Capability) satellites slightly better than IOV (In Orbit Validation). For BeiDou an alignment of the broadcast frame to IGS14/CODE comparable to GLONASS is observed, regardless of whether IGSO (Inclined Geosynchronous Orbit) or MEO (Medium Earth Orbit) satellites are considered. For all satellites, position differences according to the broadcast ephemeris relative to IGS14/CODE orbits are projected to the radial, along-track and crosstrack triad, with the largest periodic differences affecting mostly the along track component. Sudden discontinuities at the level of up to 1 m and 2–3 ns are observed for the along-track component and the satellite clock, respectively. The time scales of GLONASS, Galileo, QZSS, SBAS and NAVIC are very closely aligned to GPS, with constant offsets depending on receiver type. The offset of the BeiDou time scale to GPS has an oscillatory pattern with peak-to-peak values up to 100 ns. To characterize receiver-dependent biases the average of six Septentrio receivers is taken as reference, and relative offsets of the other receiver types are investigated. These receiver-dependent biases may depend on the individual station, or for the same station on the update of the firmware. A detailed calibration history is presented for each multiGNSS station studied

    Implicit Cooperative Positioning in Vehicular Networks

    Get PDF
    Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.Comment: 15 pages, 10 figures, in review, 201

    Crustal deformation across and beyond Central Europe and its impact on the boundaries

    Get PDF
    Land is a critical and limited natural resource. The Land Administration System (LAS) has been developed to resolve and adjudicate over any disputes that might arise concerning the rights and boundaries of land. Land registration and cadastre are types of land recording that need to be established. To secure the property rights, we must be sure of accuracy of the boundary points determining the size of the property. However, in addition to typical factors considered when determining the boundary point positions, such as accuracy of geodetic networks and measurement errors, the global and local crustal deformation, resulting, e.g., from the movement of tectonic plates, should be considered. In this work, the focus is on the movement of points inside the European plate due to tectonic movement, without taking into account local events caused by erosion, landslides, etc. The study area is Europe, and particular attention was paid to Poland, which is located in the centre of the European continent and does not have significant anomalous sub-areas, making it an authoritative research object. In this study, we analysed the velocity of point displacements and the boundary deformation, using GPS observations. For this reason, we used both global (IGS) and regional (ETRF) reference frames, to show differences in point velocities for the studied areas. Overall, for the needs of the real estate cadastre in Poland, information about parcel boundary points must be obtained with an accuracy better than 0.30 m. Within 25 years, the border mark may be shifted by 0.13 m due to tectonic plate movement, which is within the required accuracy. Pursuant to the current legal regulations, the measurements of the boundary points can be performed with any method, ensuring the required accuracy (0.30 m). The most commonly used are direct measurements (GNSS and tacheometry) and photogrammetric measurements. It is recommended that periodic verifications and update of the cadastre data in Poland be carried out at least once every 15 years. In the case of such relatively frequent verification and possible modernisation of data, the potential impact of tectonic plate movement on the relative boundary point displacement can be ignored, particularly in the short term. However, for a long time period it has an influence. We suggest “relatively frequent” cadastral boundary verification to be able to ignore such influence

    Application and evaluation of direct sparse visual odometry in marine vessels

    Get PDF
    With the international community pushing for a computer vision based option to the laws requiring a look-out for marine vehicles, there is now a significant motivation to provide digital solutions for navigation using these envisioned mandatory visual sensors. This paper explores the monocular direct sparse odometry algorithm when applied to a typical marine environment. The method uses a single camera to estimate a vessel\u27s motion and position over time and is then compared to ground truth to establish feasibility as both a local and global navigation system. Whilst it was inconsistent in accurately estimating vessel position, it was found that it could consistently estimate the vessel\u27s orientation in the majority of the situations the vessel was tasked with. It is therefore shown that monocular direct sparse odometry is partially suitable as a standalone navigation system and is a strong base for a multi-sensor solution

    Multi-environment Georeferencing of RGB-D Panoramic Images from Portable Mobile Mapping – a Perspective for Infrastructure Management

    Get PDF
    Hochaufgelöste, genau georeferenzierte RGB-D-Bilder sind die Grundlage für 3D-Bildräume bzw. 3D Street-View-Webdienste, welche bereits kommerziell für das Infrastrukturmanagement eingesetzt werden. MMS ermöglichen eine schnelle und effiziente Datenerfassung von Infrastrukturen. Die meisten im Aussenraum eingesetzten MMS beruhen auf direkter Georeferenzierung. Diese ermöglicht in offenen Bereichen absolute Genauigkeiten im Zentimeterbereich. Bei GNSS-Abschattung fällt die Genauigkeit der direkten Georeferenzierung jedoch schnell in den Dezimeter- oder sogar in den Meterbereich. In Innenräumen eingesetzte MMS basieren hingegen meist auf SLAM. Die meisten SLAM-Algorithmen wurden jedoch für niedrige Latenzzeiten und für Echtzeitleistung optimiert und nehmen daher Abstriche bei der Genauigkeit, der Kartenqualität und der maximalen Ausdehnung in Kauf. Das Ziel dieser Arbeit ist, hochaufgelöste RGB-D-Bilder in verschiedenen Umgebungen zu erfassen und diese genau und zuverlässig zu georeferenzieren. Für die Datenerfassung wurde ein leistungsstarkes, bildfokussiertes und rucksackgetragenes MMS entwickelt. Dieses besteht aus einer Mehrkopf-Panoramakamera, zwei Multi-Beam LiDAR-Scannern und einer GNSS- und IMU-kombinierten Navigationseinheit der taktischen Leistungsklasse. Alle Sensoren sind präzise synchronisiert und ermöglichen Zugriff auf die Rohdaten. Das Gesamtsystem wurde in Testfeldern mit bündelblockbasierten sowie merkmalsbasierten Methoden kalibriert, was eine Voraussetzung für die Integration kinematischer Sensordaten darstellt. Für eine genaue und zuverlässige Georeferenzierung in verschiedenen Umgebungen wurde ein mehrstufiger Georeferenzierungsansatz entwickelt, welcher verschiedene Sensordaten und Georeferenzierungsmethoden vereint. Direkte und LiDAR SLAM-basierte Georeferenzierung liefern Initialposen für die nachträgliche bildbasierte Georeferenzierung mittels erweiterter SfM-Pipeline. Die bildbasierte Georeferenzierung führt zu einer präzisen aber spärlichen Trajektorie, welche sich für die Georeferenzierung von Bildern eignet. Um eine dichte Trajektorie zu erhalten, die sich auch für die Georeferenzierung von LiDAR-Daten eignet, wurde die direkte Georeferenzierung mit Posen der bildbasierten Georeferenzierung gestützt. Umfassende Leistungsuntersuchungen in drei weiträumigen anspruchsvollen Testgebieten zeigen die Möglichkeiten und Grenzen unseres Georeferenzierungsansatzes. Die drei Testgebiete im Stadtzentrum, im Wald und im Gebäude repräsentieren reale Bedingungen mit eingeschränktem GNSS-Empfang, schlechter Beleuchtung, sich bewegenden Objekten und sich wiederholenden geometrischen Mustern. Die bildbasierte Georeferenzierung erzielte die besten Genauigkeiten, wobei die mittlere Präzision im Bereich von 5 mm bis 7 mm lag. Die absolute Genauigkeit betrug 85 mm bis 131 mm, was einer Verbesserung um Faktor 2 bis 7 gegenüber der direkten und LiDAR SLAM-basierten Georeferenzierung entspricht. Die direkte Georeferenzierung mit CUPT-Stützung von Bildposen der bildbasierten Georeferenzierung, führte zu einer leicht verschlechterten mittleren Präzision im Bereich von 13 mm bis 16 mm, wobei sich die mittlere absolute Genauigkeit nicht signifikant von der bildbasierten Georeferenzierung unterschied. Die in herausfordernden Umgebungen erzielten Genauigkeiten bestätigen frühere Untersuchungen unter optimalen Bedingungen und liegen in derselben Grössenordnung wie die Resultate anderer Forschungsgruppen. Sie können für die Erstellung von Street-View-Services in herausfordernden Umgebungen für das Infrastrukturmanagement verwendet werden. Genau und zuverlässig georeferenzierte RGB-D-Bilder haben ein grosses Potenzial für zukünftige visuelle Lokalisierungs- und AR-Anwendungen

    A Review of Selected Applications of GNSS CORS and Related Experiences at the University of Palermo (Italy)

    Get PDF
    Services from the Continuously Operating Reference Stations (CORS) of the Global Navigation Satellite System (GNSS) provide data and insights to a range of research areas such as physical sciences, engineering, earth and planetary sciences, computer science, and environmental science. Even though these fields are varied, they are all linked through the GNSS operational application. GNSS CORS have historically been deployed for three-dimensional positioning but also for the establishment of local and global reference systems and the measurement of ionospheric and tropospheric errors. In addition to these studies, CORS is uncovering new, emerging scientific applications. These include real-time monitoring of land subsidence via network real-time kinematics (NRTK) or precise point positioning (PPP), structural health monitoring (SHM), earthquake and volcanology monitoring, GNSS reflectometry (GNSS-R) for mapping soil moisture content, precision farming with affordable receivers, and zenith total delay to aid hydrology and meteorology. The flexibility of CORS infrastructure and services has paved the way for new research areas. The aim of this study is to present a curated selection of scientific papers on prevalent topics such as network monitoring, reference frames, and structure monitoring (like dams), along with an evaluation of CORS performance. Concurrently, it reports on the scientific endeavours undertaken by the Geomatics Research Group at the University of Palermo in the realm of GNSS CORS over the past 15 years
    • …
    corecore