277 research outputs found

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    System level modeling and evaluation of advanced linear interference aware receivers

    Get PDF
    To cope with the growth of data traffic through mobile networks, efficient utilization of the available radio spectrum is needed. In densely deployed radio networks, User Equipments (UE) will experience high levels of interference which limits the achievable spectral efficiency. In this case, a way to improve the achievable performance is by mitigating interference at the UE side. Advanced linear interference aware receivers are linear receivers able to mitigate external co-channel interference. Optimum linear interference rejection is obtained with the Interference Rejection Combining (IRC) receiver which relies on the ideal knowledge of the interference covariance matrix. The IRC interference covariance matrix is the sum of all interference channel covariance matrices. In practical radio networks, like LTE-Advanced, the knowledge of interference channel covariance matrices might not always be available. However, the IRC interference covariance matrix estimation can be done with a data-based or reference-symbol-based interference covariance matrix estimation algorithm. In this thesis, the modeling and evaluation of advanced linear interference aware receivers for LTE-Advanced downlink are studied. In particular, the data-based and reference-symbol-based covariance matrix estimation algorithms are modeled by using the Wishart distribution. This modeling allows the evaluation of advanced linear receivers without explicit need for baseband signals. The evaluation is done with a system level simulator. Later, a comparison of performance between advanced linear interference aware receivers and 3GPP baseline linear receivers for multiple homogeneous and heterogeneous deployment scenarios is presented. Finally, it is shown that advanced linear interference aware receivers can provide spectral efficiency improvements specially to UEs located at cell borders

    Radio Resource Management for Uplink Grant-Free Ultra-Reliable Low-Latency Communications

    Get PDF

    Interference-aware iterative block decision feedback equalizer for single-carrier transmission

    Get PDF
    The deployment of increasingly dense heterogeneous mobile networks can create high levels of interference among users that, combined with severely time-dispersive channels, can result in substantial performance degradation. To cope with both effects, in this paper, we propose an iterative block decision feedback equalizer (IBDFE) for single carrier (SC) transmissions that makes use of the correlation between the interference in the receiving antennas and minimizes the mean squared error (MSE) of the detected symbols. Our analytic and simulated performance results show that the proposed receiver can clearly outperform the conventional IBDFE and the linear interference rejection combining (IRC) detector in severely time-dispersive channels with strong cochannel interference.info:eu-repo/semantics/acceptedVersio

    IMPROVED RECEIVER FOR WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    An iterative receiver is proposed for receiving in a cell a signal (A) and for providing information carried on said signal (A) by the execution of at least one processing iteration. The receiver comprises: an estimate assembly for receiving the signal (A) and providing, at each one of said processing iterations, a respective information estimate ; a regeneration assembly for receiving, at each processing iteration, said information estimate provided by the estimate assembly at that iteration, and for providing a regenerated signal (B) therefore based on said information estimate and on attenuation of radio channels over which the signal (A) has been transmitted; an interference estimate unit for providing, at each iteration, an interference estimate (C) based on the signal (A) and the regenerated signal (B), the estimate assembly providing, starting from a second processing iteration of said processing iterations, said information estimate based on said interference estimate; and an extraction unit for extracting said information from said information estimate
    • …
    corecore