7,012 research outputs found

    State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System

    Get PDF
    Transaction-based energy (TE) management and control has become an increasingly relevant topic, attracting considerable attention from industry and the research community alike. As a result, new techniques are emerging for its development and actualization. This paper presents a comprehensive review of TE involving peer-to-peer (P2P) energy trading and also covering the concept, enabling technologies, frameworks, active research efforts and the prospects of TE. The formulation of a common approach for TE management modelling is challenging given the diversity of circumstances of prosumers in terms of capacity, profiles and objectives. This has resulted in divergent opinions in the literature. The idea of this paper is therefore to explore these viewpoints and provide some perspectives on this burgeoning topic on P2P TE systems. This study identified that most of the techniques in the literature exclusively formulate energy trade problems as a game, an optimization problem or a variational inequality problem. It was also observed that none of the existing works has considered a unified messaging framework. This is a potential area for further investigation

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Towards transactive energy systems: An analysis on current trends

    Get PDF
    This paper presents a comprehensive analysis on the latest advances in transactive energy systems. The main contribution of this work is centered on the definition of transactive energy concepts and how such systems can be implemented in the smart grid paradigm. The analyzed works have been categorized into three lines of research: (i) transactive network management; (ii) transactive control; and (iii) peer-to-peer markets. It has been found that most of the current approaches for transactive energy are available as a model, lacking the real implementation to have a complete validation. For that purpose, both scientific and practical aspects of transactive energy should be studied in parallel, implementing adequate simulation platforms and tools to scrutiny the results.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No. 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.info:eu-repo/semantics/publishedVersio

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    A systematic review of machine learning techniques related to local energy communities

    Get PDF
    In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio
    • …
    corecore