9,426 research outputs found

    Reliability Analysis of Complex NASA Systems with Model-Based Engineering

    Get PDF
    The emergence of model-based engineering, with Model- Based Systems Engineering (MBSE) leading the way, is transforming design and analysis methodologies. The recognized benefits to systems development include moving from document-centric information systems and document-centric project communication to a model-centric environment in which control of design changes in the life cycles is facilitated. In addition, a single source of truth about the system, that is up-to-date in all respects of the design, becomes the authoritative source of data and information about the system. This promotes consistency and efficiency in regard to integration of the system elements as the design emerges and thereby may further optimize the design. Therefore Reliability Engineers (REs) supporting NASA missions must be integrated into model-based engineering to ensure the outputs of their analyses are relevant and value-needed to the design, development, and operational processes for failure risks assessment and communication

    How do software architects consider non-functional requirements: an exploratory study

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dealing with non-functional requirements (NFRs) has posed a challenge onto software engineers for many years. Over the years, many methods and techniques have been proposed to improve their elicitation, documentation, and validation. Knowing more about the state of the practice on these topics may benefit both practitioners' and researchers' daily work. A few empirical studies have been conducted in the past, but none under the perspective of software architects, in spite of the great influence that NFRs have on daily architects' practices. This paper presents some of the findings of an empirical study based on 13 interviews with software architects. It addresses questions such as: who decides the NFRs, what types of NFRs matter to architects, how are NFRs documented, and how are NFRs validated. The results are contextualized with existing previous work.Peer ReviewedPostprint (author’s final draft

    Model-based risk assessment

    Get PDF
    In this research effort, we focus on model-based risk assessment. Risk assessment is essential in any plan intended to manage software development or maintenance process. Subjective techniques are human intensive and error-prone. Risk assessment should be based on architectural attributes that we can quantitatively measure using architectural level metrics. Software architectures are emerging as an important concept in the study and practice of software engineering nowadays, due to their emphasis on large-scale composition of software product, and to their support for emerging software engineering paradigms, such as product line engineering, component based software engineering, and software evolution.;In this dissertation, we generalize our earlier work on reliability-based risk assessment. We introduce error propagation probability in the assessment methodology to account for the dependency among the system components. Also, we generalize the reliability-based risk assessment to account for inherent functional dependencies.;Furthermore, we develop a generic framework for maintainability-based risk assessment which can accommodate different types of software maintenance. First, we introduce and define maintainability-based risk assessment for software architecture. Within our assessment framework, we investigate the maintainability-based risk for the components of the system, and the effect of performing the maintenance tasks on these components. We propose a methodology for estimating the maintainability-based risk when considering different types of maintenance. As a proof of concept, we apply the proposed methodology on several case studies. Moreover, we automate the estimation of the maintainability-based risk assessment methodology

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Avionics and controls research and technology

    Get PDF
    The workshop provided a forum for industry and universities to discuss the state-of-the-art, identify the technology needs and opportunities, and describe the role of NASA in avionics and controls research

    Considerations in development of expert systems for real-time space applications

    Get PDF
    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications
    • …
    corecore