757 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network

    Segment phoneme classification from speech under noisy conditions: Using amplitude-frequency modulation based two-dimensional auto-regressive features with deep neural networks

    Get PDF
    This thesis investigates at the acoustic-phonetic level the noise robustness of features derived using the AM-FM analysis of speech signals. The analysis on the noise robustness of these features is done using various neural network models and is based on the segment classification of phonemes. This analysis is also extended and the robustness of the AM-FM based features is compared under similar noise conditions with the traditional features such as the Mel-frequency cepstral coefficients(MFCC). We begin with an important aspect of segment phoneme classification experiments which is the study of architectural and training strategies of the various neural network models used. The results of these experiments showed that there is a difference in the training pattern adopted by the various neural network models. Before over-fitting, models that undergo pre-training are seen to train for many epochs more than their opposite models that do not undergo pre-training. Taking this difference in training pattern into perspective and based on phoneme classification rate the Gaussian restricted Boltzmann machine and the single layer perceptron are selected as the best performing model of the two groups, respectively. Using the two best performing models for classification, segment phoneme classification experiments under different noise conditions are performed for both the AM-FM based and traditional features. The experiments showed that AM-FM based frequency domain linear prediction features with or without feature compensation are more robust in the classification of 61 phonemes under white noise and 0 dBdB signal-to-noise ratio(SNR) conditions compared to the traditional features. However, when the phonemes are folded to 39 phonemes, the results are ambiguous under all noise conditions and there is no unanimous conclusion as to which feature is most robust

    A Framework For Enhancing Speaker Age And Gender Classification By Using A New Feature Set And Deep Neural Network Architectures

    Get PDF
    Speaker age and gender classification is one of the most challenging problems in speech processing. Recently with developing technologies, identifying a speaker age and gender has become a necessity for speaker verification and identification systems such as identifying suspects in criminal cases, improving human-machine interaction, and adapting music for awaiting people queue. Although many studies have been carried out focusing on feature extraction and classifier design for improvement, classification accuracies are still not satisfactory. The key issue in identifying speaker’s age and gender is to generate robust features and to design an in-depth classifier. Age and gender information is concealed in speaker’s speech, which is liable for many factors such as, background noise, speech contents, and phonetic divergences. In this work, different methods are proposed to enhance the speaker age and gender classification based on the deep neural networks (DNNs) as a feature extractor and classifier. First, a model for generating new features from a DNN is proposed. The proposed method uses the Hidden Markov Model toolkit (HTK) tool to find tied-state triphones for all utterances, which are used as labels for the output layer in the DNN. The DNN with a bottleneck layer is trained in an unsupervised manner for calculating the initial weights between layers, then it is trained and tuned in a supervised manner to generate transformed mel-frequency cepstral coefficients (T-MFCCs). Second, the shared class labels method is introduced among misclassified classes to regularize the weights in DNN. Third, DNN-based speakers models using the SDC feature set is proposed. The speakers-aware model can capture the characteristics of the speaker age and gender more effectively than a model that represents a group of speakers. In addition, AGender-Tune system is proposed to classify the speaker age and gender by jointly fine-tuning two DNN models; the first model is pre-trained to classify the speaker age, and second model is pre-trained to classify the speaker gender. Moreover, the new T-MFCCs feature set is used as the input of a fusion model of two systems. The first system is the DNN-based class model and the second system is the DNN-based speaker model. Utilizing the T-MFCCs as input and fusing the final score with the score of a DNN-based class model enhanced the classification accuracies. Finally, the DNN-based speaker models are embedded into an AGender-Tune system to exploit the advantages of each method for a better speaker age and gender classification. The experimental results on a public challenging database showed the effectiveness of the proposed methods for enhancing the speaker age and gender classification and achieved the state of the art on this database
    • …
    corecore