498 research outputs found

    A 3D LBM-DEM study of sheared particle suspensions under the influence of temperature-dependent viscosity

    Get PDF
    Particle suspensions form a fundamental yet complex component of many scientific and engineering endeavours. This paper proposes a numerical coupling between the lattice Boltzmann and discrete element methods that resolves particle suspensions exposed to thermal influences due to temperature-dependent fluid viscosity and conjugate heat transfer between components. Validation of the model was performed via the study of the relative viscosity of suspensions. This numerically corroborated the proposed temperature-dependence of the relative viscosity of suspensions. The model was finally used to interrogate the macroscopic behaviour of sheared suspensions at a range of solid volume fractions. This demonstrated changes in suspension flow behaviour due to temperature related effects. Future work based on these results would examine how particle properties could be modified to exacerbate and control temperature-based phenomena potentially leading to improvements in domains such as industrial material processing and manufacture

    Mesoscopic Methods in Engineering and Science

    Get PDF
    (First paragraph) Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its constituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has usually been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications and the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material properties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived within the macroscopic framework, but the qualitative nature of the macroscopic dynamics is usually insensitive to the details of the underlying microscopic interactions

    On recovering the second-order convergence of the lattice Boltzmann method with reaction-type source terms

    Full text link
    This study derives a method to consistently recover the second-order convergence of the lattice Boltzmann method (LBM), which is frequently degraded by the improper discretisation of required source terms. The work focuses on advection-diffusion models in which the source terms are dependent on the intensity of transported fields. The main findings are applicable to a wide range of formulations within the LBM framework. All considered source terms are interpreted as contributions to the zeroth-moment of the distribution function. These account for sources in a scalar field, such as density, concentration or temperature. In addition to this, certain immersed boundary methods can be interpreted as a source term in their formulation, highlighting a further application for this work. This paper makes three primary contributions to the current state-of-the-art. Firstly, it identifies the differences observed between the ways source terms are included in the LBM schemes present in the literature. The algebraic manipulations are explicitly presented in this paper to clarify the differences observed, and identify their origin. Secondly, it derives in full detail, the implicit relation between the value of the transported macroscopic field, and the sum of the LBM densities. Moreover, this relation is valid for any source term discretization scheme, and three equivalent forms of the second-order accurate collision operator are presented. Finally, closed-form solutions of this implicit relation are shown for a variety of common models. The second-order convergence of the proposed LBM schemes is verified on both linear and non-linear source terms. Commonly used diffusive and acoustic scalings are discussed, and their pitfalls are identified. Moreover, for a simplified case, the competing errors are shown visually with isolines of error in the space of spatial and temporal resolutions

    Hindered diffusion of nanoparticles

    Get PDF
    Brownian theory provides us with a powerful tool which can be used to delve into a microscopic world of molecules, cells and nanoparticles, that was originally presumed to be beyond our reach. Consequently, modeling the inherent dynamics of a system through a Brownian transport equation is of relevance to several real-word problems that involve nanoparticles including, the transport and mitigation of particulate matter (PM) generated though fossil fuel combustion and nanocarrier mediated drug delivery. Experimentally forecasting these systems is challenging due to the simultaneous prevalence of disparate length and time scales in them. Correspondingly, an in-silico driven assessment at such nanoscales can complement existing experimental techniques.Hence, in this thesis, a novel multiphase direct numerical simulation (DNS) framework is proposed to address the transport at these nanoscales. A coupled Langevin-immersed boundary method (LaIBM), that solves the fluid as an Eulerian field and the particle in a Lagrangian basis, is developed in this thesis. This framework is unique in its capability to include the resolved instantaneous hydrodynamics around the Brownian nanoparticle (without the need for an a-priori determination of the relevant mobility tensors) into the particle (Langevin) equation of motion. The performance of this technique is established and validated using well-established theoretical bases including the well-known theories for unbounded and hindered diffusion (wherein hydrodynamic interactions mediated by the fluid such as particle-particle or particle-wall influence the governing dynamics) of Brownian particles in a liquid. Correspondingly, it is shown that directional variations in mean-squared displacements, velocity auto-correlation functions and diffusivities of the Brownian nanoparticle correspond well with these standard theoretical bases. Moreover, since the resolved flow around the particle is inherently available in the proposed DNS method, the nature of the hydrodynamic resistances (on the particle) including the inherent anisotropies and correlated inter-particle interactions (mediated by the fluid) are further identified and shown to influence particle mobility. Furthermore, this framework is also extended towards Brownian transport in a rarefied gas using first order models to account for the non-continuum effects. Thus, the utility of this novel method is established in both colloids and aerosols, thereby aiding in modeling the transport of a fractal shaped PM (in the latter) and a spherical nanocarrier in a micro-channel (in the former)

    High-Performance Computing of Flow, Diffusion, and Hydrodynamic Dispersion in Random Sphere Packings

    Get PDF
    This thesis is dedicated to the study of mass transport processes (flow, diffusion, and hydrodynamic dispersion) in computer-generated random sphere packings. Periodic and confined packings of hard impermeable spheres were generated using Jodrey–Tory and Monte Carlo procedure-based algorithms, mass transport in the packing void space was simulated using the lattice Boltzmann and random walk particle tracking methods. Simulation codes written in C programming language using MPI library allowed an efficient use of the high-performance computing systems (supercomputers). The first part of this thesis investigates the influence of the cross-sectional geometry of the confined random sphere packings on the hydrodynamic dispersion. Packings with different values of porosity (interstitial void space fraction) generated in containers of circular, quadratic, rectangular, trapezoidal, and irregular (reconstructed) geometries were studied, and resulting pre-asymptotic and close-to-asymptotic hydrodynamic dispersion coefficients were analyzed. It was demonstrated i) a significant impact of the cross-sectional geometry and porosity on the hydrodynamic dispersion coefficients, and ii) reduction of the symmetry of the cross section results in longer times to reach close-to-asymptotic values and larger absolute values of the hydrodynamic dispersion coefficients. In case of reconstructed geometry, good agreement with experimental data was found. In the second part of this thesis i) length scales of heterogeneity persistent in unconfined and confined sphere packings were analyzed and correlated with a time behavior of the hydrodynamic dispersion coefficients; close-to-asymptotic values of the dispersion coefficients (expressed in terms of plate height) were successfully fitted to the generalized Giddings equation; ii) influence of the packing microstructural disorder on the effective diffusion and hydrodynamic dispersion coefficients was investigated and clear qualitative corellation with geometrical descriptors (which are based on Delaunay and Voronoi spatial tessellations) was demonstrated

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    Optimization of a die insert produced through metal powder bed fusion

    Get PDF
    The study described in this paper is a reference application of HPDC and AM simulation coupling the benefits of the two manufacturing processes. The thermo-mechanical performance of traditional diecasting insert is improved by conformal cooling channels. The SLM simulation validate the 3D printing of steel material and conformal channels. The cost-benefits analysis supports the decision to maximize the benefits and reducing costs

    Modelling of Solar Thermochemical Reaction Systems

    Get PDF
    This article reviews the progress, challenges and opportunities in numerical modelling of thermal transport, thermochemical reactions and thermomechanics in high-temperature solar thermochemical systems. Continuum-scale models are presented in mathematical detail while highlighting the literature that uses them. The discussion is enhanced by selected examples of numerical studies of solar thermochemical systems for solar fuels and commodity material production. Property predictions necessary for the modelling of solar thermochemical reaction systems are covered
    corecore