895 research outputs found

    Investigation of indoor localization with ambient FM radio stations

    Full text link
    Localization plays an essential role in many ubiquitous computing applications. While the outdoor location-aware services based on GPS are becoming increasingly popular, their proliferation to indoor environments is limited due to the lack of widely available indoor localization systems. The de-facto standard for indoor positioning is based on Wi-Fi and while other localization alternatives exist, they either require expensive hardware or provide a low accuracy. This paper presents an investigation into localization system that leverages signals of broadcasting FM radio stations. The FM stations provide a worldwide coverage, while FM tuners are readily available in many mobile devices. The experimental results show that FM radio can be used for indoor localization, while providing longer battery life than Wi-Fi, making FM an alternative to consider for positioning.Comment: 10th IEEE Pervasive Computing and Communication conference, PerCom 2012, pp. 171 - 17

    AmbiLoc: A year-long dataset of FM, TV and GSM fingerprints for ambient indoor localization

    Get PDF
    Ambient indoor localization - an approach that leverages ambient radio signals - has been previously shown to provide promising positioning performance using the globally available infrastructure of FM, TV and cellular stations. However, the need for specialized equipment and laborious data collection constitute a high entry barrier for follow-up studies. This paper presents AmbiLoc - a dataset of radio signals for ambient indoor localization research. The dataset has been systematically collected in multiple testbeds, including large-scale and multi-floor buildings, over the course of one year. Due to the use of a software-defined radio receiver, raw signal samples in AmbiLoc allow extraction of arbitrary fingerprinting features. The first edition of AmbiLoc, introduced in this paper, includes received signals strength (RSS) fingerprints of FM, TV and GSM signals, along with the relevant metadata (such as weather conditions). The dataset is available online at AmbiLoc.org. As the first public dataset of ambient localization signals, AmbiLoc provides an easy entry and a common reference for researchers exploring novel indoor localization methods

    WiFi emission-based vs passive radar localization of human targets

    Get PDF
    In this paper two approaches are considered for human targets localization based on the WiFi signals: the device emission-based localization and the passive radar. Localization performance and characteristics of the two localization techniques are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. The former combines the Angle of Arrival (AoA) and the Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position, while the latter exploits the AoA and the bistatic range measures of the target echoes. The results obtained on experimental data show that the WiFi emission-based strategy is always effective for the positioning of human targets holding a WiFi device, but it has a poor localization accuracy and the number of measured positions largely depends on the device activity. In contrast, the passive radar is only effective for moving targets and has limited spatial resolution but it provides better accuracy performance, thanks to the possibility to integrate a higher number of received signals. These results also demonstrate a significant complementarity of these techniques, through a suitable experimental test, which opens the way to the development of appropriate sensor fusion techniques

    High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes

    Get PDF
    Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 µW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning

    Développement d'une méthode de géolocalisation à l'intérieur de bâtiments par classification des fingerprints GSM et fusion de données de capteurs embarqués

    Get PDF
    GPS has long been used for accurate and reliable outdoor localization, but it cannot operate in indoor environments, which suggests developing indoor localization methods that can provide seamless and ubiquitous services for mobile users.In this thesis, indoor localization is realized making use of received signal strength fingerprinting technique based on the existing GSM networks. A room is defined as the minimum location unit, and support vector machine are used as a mean to discriminate the rooms by classifying received signal strengths from very large number of GSM carriers. At the same time, multiple sensors, such as accelerometer and gyroscope, are widely available for modern mobile devices, which provide additional information that helps location determination. The hybrid approach that combines the GSM fingerprinting results with mobile sensor and building layout information using a particle filter provides a more accurate and fine-grained localization result.The results of experiments under realistic conditions demonstrate that correct room number can be obtained 94% of the time provided the derived model is used before significant received signal strength drift sets in. Furthermore, if the training data is sampled over a few days, the performance can remain stable exceeding 80% over a period of months, and can be further improved with various post-processing techniques. Moreover, including the mobile sensors allows the system to localize the mobile trajectory coordinates with high accuracy and reliability.L’objet de cette thèse est l’étude de la localisation et de la navigation à l’intérieur de bâtiments à l’aide des signaux disponibles dans les systèmes mobiles cellulaires et, en particulier, les signaux GSM.Le système GPS est aujourd’hui couramment utilisé en extérieur pour déterminer la position d’un objet, mais les signaux GPS ne sont pas adaptés à la localisation en intérieurIci, la localisation en intérieur est obtenue à partir de la technique des «empreintes» de puissance des signaux reçus sur les canaux utilisés par les réseaux GSM. Elle est réalisée à l’échelle de la pièce. Une classification est effectuée à partir de machines à vecteurs supports et les descripteurs utilisés sont les puissances de toutes les porteuses GSM. D’autres capteurs physiques disponibles dans les téléphones portables fournissent des informations utiles pour déterminer la position ou le déplacement de l’utilisateur. Celles-ci, ainsi que la cartographie de l’environnement, sont associées aux résultats obtenus à partir des «empreintes» GSM au sein de filtres particulaires afin d’obtenir une localisation plus précise, et sous forme de coordonnées continues.Les résultats obtenus montrent que l’utilisation des seules empreintes GSM permet de déterminer la pièce correcte dans 94% des cas sur une durée courte et que les performances restent stables pendant plusieurs mois, de l’ordre de 80%, si les données d’apprentissage sont enregistrées sur quelques jours. L’association de la cartographie du lieu et des informations issues des autres capteurs aux données de classification permettent d’obtenir les coordonnées de la trajectoire du système mobile avec une bonne précision et une bonne fiabilité
    • …
    corecore