336 research outputs found

    Assisting walking balance using a bio-inspired exoskeleton controller

    Get PDF
    Background: Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. Methods: Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. Results: Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. Conclusion: Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.Support Biomechanical Engineerin

    Otimização muscle-in-the-loop em tempo real para reabilitação física com um exosqueleto ativo: uma mudança de paradigma

    Get PDF
    Assisting human locomotion with a wearable robotic orthosis is still quite challenging, largely due to the complexity of the neuromusculoskeletal system, the time-varying dynamics that accompany motor adaptation, and the uniqueness of every individual’s response to the assistance given by the robot. To this day, these devices have not met their well-known promise yet, mostly due to the fact that they are not perfectly suitable for the rehabilitation of neuropathologic patients. One of the main challenges hampering this goal still relies on the interface and co-dependency between the human and the machine. Nowadays, most commercial exoskeletons replay pre-defined gait patterns, whereas research exoskeletons are switching to controllers based on optimized torque profiles. In most cases, the dynamics of the human musculoskeletal system are still ignored and do not take into account the optimal conditions for inducing a positive modulation of neuromuscular activity. This is because both rehabilitation strategies are still emphasized on the macro level of the whole joint instead of focusing on the muscles’ dynamics and activity, which are the actual anatomical elements that may need to be rehabilitated. Strategies to keep the human in the loop of the exoskeleton’s control laws in real-time may help to overcome these challenges. The main purpose of the present dissertation is to make a paradigm shift in the approach on how the assistance that is given to a subject by an exoskeleton is modelled and controlled during physical rehabilitation. Therefore, in the scope of the present work, it was intended to design, concede, implement, and validate a real-time muscle-in-the-loop optimization model to find the best assistive support ratio that would induce optimal rehabilitation conditions to a specific group of impaired muscles while having a minimum impact on the other healthy muscles. The developed optimization model was implemented in the form of a plugin and was integrated on a neuromechanical model-based interface for driving a bilateral ankle exoskeleton. Experimental pilot tests evaluated the feasibility and effectiveness of the model. Results of the most significant pilots achieved EMG reductions up to 61 ± 3 % in Soleus and 41 ± 10 % in Gastrocnemius Lateralis. Moreover, results also demonstrated the efficiency of the optimization’s specific reduction on rehabilitation by looking into the muscular fatigue after each experiment. Finally, two parallel preliminary studies emerged from the pilots, which looked at muscle adaptation, after a new assistive condition had been applied, over time and at the effect of the lateral positioning of the exoskeleton’s actuators on the leg muscles.Auxiliar a locomoção humana com uma ortose robótica ainda é bastante desafiante, em grande parte devido à complexidade do sistema neuromusculoesquelético, à dinâmica variável no tempo que acompanha a adaptação motora e à singularidade da resposta de cada indivíduo à assistência dada pelo robô. Até hoje, está por cumprir a promessa inicial destes dispositivos, principalmente devido ao facto de não serem perfeitamente adequados para a reabilitação de pacientes neuropatológicos. Um dos principais desafios que dificultam esse objetivo foca-se ainda na interface e na co-dependência entre o ser humano e a máquina. Hoje em dia, a maioria dos exoesqueletos comerciais reproduz padrões de marcha predefinidos, enquanto que os exoesqueletos em investigação estão só agora a mudar para controladores com base em perfis de binário otimizados. Na maioria dos casos, a dinâmica do sistema musculoesquelético humano ainda é ignorada e não tem em consideração as condições ideais para induzir uma modulação positiva da atividade neuromuscular. Isso ocorre porque ambas as estratégias de reabilitação ainda são enfatizadas no nível macro de toda a articulação, em vez de se concentrar na dinâmica e atividade dos músculos, que são os elementos anatómicos que realmente precisam de ser reabilitados. Estratégias para manter o ser humano em loop nos comandos que controlam o exoesqueleto em tempo real podem ajudar a superar estes desafios. O principal objetivo desta dissertação é fazer uma mudança de paradigma na abordagem em como a assistência que é dada a um sujeito por um exosqueleto é modelada e controlada durante a reabilitação física. Portanto, no contexto do presente trabalho, pretendeu-se projetar, conceder, implementar e validar um modelo de otimização muscle-in-the-loop em tempo real para encontrar a melhor relação de suporte capaz de induzir as condições ideais de reabilitação para um grupo específico de músculos fragilizados, tendo um impacto mínimo nos outros músculos saudáveis. O modelo de otimização desenvolvido foi implementado na forma de um plugin e foi integrado numa interface baseada num modelo neuromecânico para o controlo de um exoesqueleto bilateral de tornozelo. Testes experimentais piloto avaliaram a viabilidade e a eficácia do modelo. Os resultados dos testes mais significativos demonstraram reduções de EMG de até 61 ± 3 % no Soleus e 41 ± 10 % no Gastrocnemius Lateral. Adicionalmente, os resultados demonstraram também a eficiência em reabilitação da redução específica no EMG devido à otimização tendo em conta a fadiga muscular após cada teste. Finalmente, dois estudos preliminares paralelos emergiram dos testes piloto, que analisaram a adaptação muscular após uma nova condição assistiva ter sido definida ao longo do tempo e o efeito do posicionamento lateral dos atuadores do exoesqueleto nos músculos da perna.Mestrado em Engenharia Biomédic

    Design, Control, and Perception of Bionic Legs and Exoskeletons

    Full text link
    Bionic systems---wearable robots designed to replace, augment, or interact with the human body---have the potential to meaningfully impact quality of life; in particular, lower-limb prostheses and exoskeletons can help people walk faster, better, and safer. From a technical standpoint, there is a high barrier-to-entry to conduct research with bionic systems, limiting the quantity of research done; additionally, the constraints introduced by bionic systems often prohibit accurate measurement of the robot's output dynamics, limiting the quality of research done. From a scientific standpoint, we have begun to understand how people regulate lower-limb joint impedance (stiffness and damping), but not how they sense and perceive changes in joint impedance. To address these issues, I first present an open-source bionic leg prosthesis; I describe the design and testing process, and demonstrate patients meeting clinical ambulation goals in a rehabilitation hospital. Second, I develop tools to characterize open-loop impedance control systems and show how to achieve accurate impedance control without a torque feedback signal; additionally, I evaluate the efficiency of multiple bionic systems. Finally, I investigate how well people can perceive changes in the damping properties of a robot, similar to an exoskeleton. With this dissertation, I provide technical and scientific advances aimed at accelerating the field of bionics, with the ultimate goal of enabling meaningful impact with bionic systems.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163108/1/afazocar_1.pd

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF
    corecore