125 research outputs found

    Retrieving leaf area index from multi-angular airborne data

    Get PDF
    This work is aimed to demonstrate the feasibility of a methodology for retrieving bio-geophysical variables whilst at the same time fully accounting for additional information on directional anisotropy. A model-based approach has been developed to deconvolve the angular reflectance into single landcovers reflectances, attempting to solve the inconsistencies of 1D models and linear mixture approaches. The model combines the geometric optics of large scale canopy structure with principles of radiative transfer for volume scattering within individual crowns. The reliability of the model approach to retrieve LAI has been demonstrated using data from DAISEX- 99 campaign at Barrax, Spain. Airborne data include POLDER and HyMap data in which various field plots were observed under varying viewing/illumination angles. Nearly simultaneously, a comprehensive field data set was acquired on specific crop plots. The inversions provided accurate LAI values, revealing the model potential to combine spectral and directional information to increase the likely accuracy of the retrievals. In addition, the sensitivity of retrievals with the angular and spectral subset of observations was analysed, showing a high consistency between results. This study has contributed to assess the uncertainties with products derived from satellite data like SEVIRI/MSG

    Impact of multiangular information on empirical models to estimate canopy nitrogen concentration in mixed forest

    Full text link
    Directional effects in remotely sensed reflectance data can influence the retrieval of plant biophysical and biochemical estimates. Previous studies have demonstrated that directional measurements contain added information that may increase the accuracy of estimated plant structural parameters. Because accurate biochemistry mapping is linked to vegetation structure, also models to estimate canopy nitrogen concentration (CN) may be improved indirectly from using multiangular data. Hyperspectral imagery with five different viewing zenith angles was acquired by the spaceborne CHRIS sensor over a forest study site in Switzerland. Fifteen canopy reflectance spectra corresponding to subplots of field-sampled trees were extracted from the preprocessed CHRIS images and subsequently two-term models were developed by regressing CN on four datasets comprising either original or continuum-removed reflectances. Consideration is given to the directional sensitivity of the CN estimation by generating regression models based on various combinations (n=15) of observation angles. The results of this study show that estimating canopy CN with only nadir data is not optimal irrespective of spectral data processing. Moreover adding multiangular information improves significantly the regression model fits and thus the retrieval of forest canopy biochemistry. These findings support the potential of multiangular Earth observations also for application-oriented ecological monitoring

    Remote sensing of leaf area index : enhanced retrieval from close-range and remotely sensed optical observations

    Get PDF
    A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.Ei saatavill

    Satellite estimation of biophysical parameters for ecological models.

    Get PDF
    Ecological models are central to understanding of hydrological and carbon cycles. These models need input from Earth Observation data to function at regional to global scales. Requirements of these models and the satellite missions designed to fulfill them are reviewed to asses the present situation. The aim is to establish a better informed framework for the design and development of future satellite missions to meet the needs of ecological modellers. Key land surface parameters that can potentially be derived by remote sensing are analysed - leaf area index, leaf chlorophyll content, the fraction of photosynthetically-active radiation absorbed by the canopy and the fractional cover - as well as the aerosol optical thickness. Three coupled models - PROSPECT, FLIGHT and 6S - are used to simulate top of the atmosphere reflectances observed in a number of viewing directions and spectral wavebands within the visible and near-infrared domains. A preliminary study provides a sensitivity analysis of the top of the atmosphere reflectances to the input parameters and to the viewing angles. Finally, a methodology that links ecological model requirements to satellite instrument capabilities is presented. The three coupled models - PROSPECT, FLIGHT and 6S - are inverted using a simple technique based on look-up tables (LUTs). The LUT is used to estimate canopy biophysical variables from remotely-sensed data observed at the top of the atmosphere with different directional and spectral sampling configurations. The retrieval uncertainty is linked with the instrument radiometric accuracy by analysing the impact of different levels of radiometric noise at the input. The parameters retrieved in the inversion are used to drive two land-surface parameterization models, Biome-BGC and JULES. The effects of different configurations and of the radiometric noise on the NPP estimated are analysed. The technique is applied to evaluate desirable sensor characteristics for driving models of boreal forest productivity. The results are discussed in view of the definition of future satellites and the selection of the best measurement configuration for accurate estimation of canopy characteristics

    Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    Get PDF
    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels

    Validation and application of the MERIS Terrestrial Chlorophyll Index.

    Get PDF
    Climate is one of the key variables driving ecosystems at local to global scales. How and to what extent vegetation responds to climate variability is a challenging topic for global change analysis. Earth observation provides an opportunity to study temporal ecosystem dynamics, providing much needed information about the response of vegetation to environmental and climatic change at local to global scales. The European Space Agency (ESA) uses data recorded by the Medium Resolution Imaging Spectrometer (MERlS) in red I near infrared spectral bands to produce an operational product called the MERlS Terrestrial Chlorophyll Index (MTCI). The MTCI is related to the position of the red edge in vegetation spectra and can be used to estimate the chlorophyll content of vegetation. The MTCI therefore provides a powerful product to monitor phenology, stress and productivity. The MTCI needs full validation if it is to be embraced by the user community who require precise and consistent, spatial and temporal comparisons of vegetation condition. This research details experimental investigations into variables that may influence the relationship between the MTCI and vegetation chlorophyll content, namely soil background and sensor view angle, vegetation type and spatial scale. Validation campaigns in the New Forest and at Brooms Barn agricultural study site reinforced the strong correlation between chlorophyll content and MTCI that was evident from laboratory spectroscopy investigations, demonstrating the suitability of the MTCI as a surrogate for field chlorophyll content measurements independent of cover type. However, this relationship was significantly weakened where the leaf area index (LAI) was low, indicating that the MTCI is sensitive to the effects of soil background. In the light of such conclusions, this project then assessed the MTCI as a tool to monitor changes in ecosystem phenology as a function of climatic variability, and the suitability of the MTCI as a surrogate measure of photosynthetic light use efficiency, to model ecosystem gross primary productivity (GPP) at various sites in North America with contrasting vegetation types. Changes in MTCI throughout the growing season demonstrated the potential of the MTCI to estimate vegetation dynamics, characterising the temporal characteristics in both phenology and gross primary productivity

    Empirical Studies on Multiangular, Hyperspectral, and Polarimetric Reflectance of Natural Surfaces

    Get PDF
    The reflectance factor is a quantity describing the efficiency of a surface to reflect light and affecting the observed brightness of reflected light. It is a complex property that varies with the view and illumination geometries as well as the wavelength and polarization of the light. The reflectance factor response is a peculiar property of each target surface. In optical remote sensing, the observed reflectance properties of natural surfaces are used directly for, e.g., classifying targets. Also, it is possible to extract target physical properties from observations, but generally this requires an understanding and modeling of the reflectance properties of the target. The most direct way to expand our understanding of the reflectance properties of natural surfaces is through empirical measurements. This thesis presents three original measurement setups for obtaining the reflectance properties of natural surfaces and some of the results acquired using them. The first instrument is the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO); an instrument for measuring the view angle dependency of polarized hyperspectral reflectance factor on small targets. The second instrument is an unmanned aerial vehicle (UAV) setup with a consumer camera used for taking measurements. The procedure allows 2D-mapping of the reflectance factor view angle dependency over larger areas. The third instrument is a virtual hyperspectral LiDAR, i.e. a setup for acquiring laser scanner point clouds with 3D-referenced reflectance spectra ([x,y,z,R(λ)]). During the research period 2005 2011, the FIGIFIGO was used to measure the angular reflectance properties of nearly 400 remote sensing targets, making the acquired reflectance library one of the largest of its kind in the world. These data have been exploited in a number of studies, including studies dealing with the vicarious calibration of airborne remote sensing sensors and satellite imagery and the development and characterization of reflectance reference targets for airborne remote sensing sensors, and the reflectance measurements have been published as a means of increasing the general understanding of the scattering of selected targets. The two latter instrument prototypes demonstrate emerging technologies that are being used in a novel way in remote sensing. Both measurement concepts have shown promising results, indicating that, in some cases, it can be beneficial to use such a methodology in place of the traditional remote sensing methods. Thus, the author believes that such measurement concepts will be used more widely in the near future. Heijastuskerroin on kullekin kohteelle yksilöllinen ominaisuus joka kuvaa kohteesta heijastuneen valon määrää. Heijastuskertoimen arvo riippuu havainto- ja valaistusgeometriasta sekä valon aallonpituudesta ja polarisaatiosta. Useimmissa optisen kaukokartoituksen menetelmissä mitataan kohteiden heijastuskerrointa. Näitä heijastuskerroinhavaintoja käytetään suoraan esim. kohteiden luokittelussa. Kehittyneemmissä menetelmissä havainnoista on myös mahdollista irrottaa joitain kohteen fysikaalisia ominaisuuksia, mutta yleensä tämä edellyttää kohteen ymmärtämistä sekä valonsironnan mallintamista. Suorin tapa laajentaa ymmärrystä luonnon pintojen valonsironnasta on tehdä empiirisiä mittauksia. Tässä väitöskirjassa esitellään kolme mittalaitetta luonnon pintojen valonsironnan mittaamiseksi sekä näillä laitteilla kerättyjä tuloksia. Ensimmäinen esiteltävä mittalaite on Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO), jolla voidaan mitata kohteen sirottaman valon suuntariippuvuutta valon aallonpituuden sekä polarisaation funktiona. Toinen mittalaite on automaattinen miehittämätön helikopteri. Kopteriin asennetun kameran sekä kuvien yhdistämismenetelmän avulla maaston valonsironnan suuntariippuvuutta voidaan kartoittaa laajemmilla alueilla kuin FIGIFIGO:a käyttäen. Kolmas mittalaite on virtuaalinen valkean valon LiDAR, jolla voidaan mitata laboratoriokohteen 3D rakenne yhdessä heijastusspektrien kanssa ([x,y,z,R(λ)]). Tutkimusjakson (2005 2011) aikana FIGIFIGO:a on käytetty lähes 400 kaukokartoituskohteen sironnan suuntariippuvuuden mittaamiseen. Näillä mittauksilla kerätty datakirjasto on yksi maailman suurimmista ja kattavimmistaan lajissaan. FIGIFIGO-mittauksia on hyödynnetty useissa tutkimuksissa esim. satelliitti havaintojen ja kaukokartoitus sensoreiden lennonaikaisessa kalibroinnissa ja validoinnissa, sekä ilmakuvauksen heijastuskerroinreferenssikohteiden kehittämisessä. Mittaustulokset on myös julkaistu tieteellisissä julkaisuissa laajentaen yleistä ymmärrystä kaukokartoituskohteiden valonsironnasta. Kaksi jälkimmäistä mittalaitetta ovat prototyyppejä joilla on testattu ja demonstroitu uutta tekniikkaa jota ei ole aiemmin hyödynnetty kaukokartoituksessa tällä tavoin. Molemmat mittauskonseptit tuottivat lupaavia tuloksia mahdollistaen uudentyyppisten mittausten tekemisen. Saadut tulokset antavat ymmärtää että mittauskonseptien kehittämistä kannattaa jatkaa ja on todennäköistä että tämän kaltaiset mittausmenetelmät tulevat jo lähitulevaisuudessa leviämään laajempaan käyttöön kaukokartoituksessa

    Empirical Studies on Multiangular, Hyperspectral, and Polarimetric Reflectance of Natural Surfaces

    Get PDF
    The reflectance factor is a quantity describing the efficiency of a surface to reflect light and affecting the observed brightness of reflected light. It is a complex property that varies with the view and illumination geometries as well as the wavelength and polarization of the light. The reflectance factor response is a peculiar property of each target surface. In optical remote sensing, the observed reflectance properties of natural surfaces are used directly for, e.g., classifying targets. Also, it is possible to extract target physical properties from observations, but generally this requires an understanding and modeling of the reflectance properties of the target. The most direct way to expand our understanding of the reflectance properties of natural surfaces is through empirical measurements. This thesis presents three original measurement setups for obtaining the reflectance properties of natural surfaces and some of the results acquired using them. The first instrument is the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO); an instrument for measuring the view angle dependency of polarized hyperspectral reflectance factor on small targets. The second instrument is an unmanned aerial vehicle (UAV) setup with a consumer camera used for taking measurements. The procedure allows 2D-mapping of the reflectance factor view angle dependency over larger areas. The third instrument is a virtual hyperspectral LiDAR, i.e. a setup for acquiring laser scanner point clouds with 3D-referenced reflectance spectra ([x,y,z,R(λ)]). During the research period 2005 2011, the FIGIFIGO was used to measure the angular reflectance properties of nearly 400 remote sensing targets, making the acquired reflectance library one of the largest of its kind in the world. These data have been exploited in a number of studies, including studies dealing with the vicarious calibration of airborne remote sensing sensors and satellite imagery and the development and characterization of reflectance reference targets for airborne remote sensing sensors, and the reflectance measurements have been published as a means of increasing the general understanding of the scattering of selected targets. The two latter instrument prototypes demonstrate emerging technologies that are being used in a novel way in remote sensing. Both measurement concepts have shown promising results, indicating that, in some cases, it can be beneficial to use such a methodology in place of the traditional remote sensing methods. Thus, the author believes that such measurement concepts will be used more widely in the near future. Heijastuskerroin on kullekin kohteelle yksilöllinen ominaisuus joka kuvaa kohteesta heijastuneen valon määrää. Heijastuskertoimen arvo riippuu havainto- ja valaistusgeometriasta sekä valon aallonpituudesta ja polarisaatiosta. Useimmissa optisen kaukokartoituksen menetelmissä mitataan kohteiden heijastuskerrointa. Näitä heijastuskerroinhavaintoja käytetään suoraan esim. kohteiden luokittelussa. Kehittyneemmissä menetelmissä havainnoista on myös mahdollista irrottaa joitain kohteen fysikaalisia ominaisuuksia, mutta yleensä tämä edellyttää kohteen ymmärtämistä sekä valonsironnan mallintamista. Suorin tapa laajentaa ymmärrystä luonnon pintojen valonsironnasta on tehdä empiirisiä mittauksia. Tässä väitöskirjassa esitellään kolme mittalaitetta luonnon pintojen valonsironnan mittaamiseksi sekä näillä laitteilla kerättyjä tuloksia. Ensimmäinen esiteltävä mittalaite on Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO), jolla voidaan mitata kohteen sirottaman valon suuntariippuvuutta valon aallonpituuden sekä polarisaation funktiona. Toinen mittalaite on automaattinen miehittämätön helikopteri. Kopteriin asennetun kameran sekä kuvien yhdistämismenetelmän avulla maaston valonsironnan suuntariippuvuutta voidaan kartoittaa laajemmilla alueilla kuin FIGIFIGO:a käyttäen. Kolmas mittalaite on virtuaalinen valkean valon LiDAR, jolla voidaan mitata laboratoriokohteen 3D rakenne yhdessä heijastusspektrien kanssa ([x,y,z,R(λ)]). Tutkimusjakson (2005 2011) aikana FIGIFIGO:a on käytetty lähes 400 kaukokartoituskohteen sironnan suuntariippuvuuden mittaamiseen. Näillä mittauksilla kerätty datakirjasto on yksi maailman suurimmista ja kattavimmistaan lajissaan. FIGIFIGO-mittauksia on hyödynnetty useissa tutkimuksissa esim. satelliitti havaintojen ja kaukokartoitus sensoreiden lennonaikaisessa kalibroinnissa ja validoinnissa, sekä ilmakuvauksen heijastuskerroinreferenssikohteiden kehittämisessä. Mittaustulokset on myös julkaistu tieteellisissä julkaisuissa laajentaen yleistä ymmärrystä kaukokartoituskohteiden valonsironnasta. Kaksi jälkimmäistä mittalaitetta ovat prototyyppejä joilla on testattu ja demonstroitu uutta tekniikkaa jota ei ole aiemmin hyödynnetty kaukokartoituksessa tällä tavoin. Molemmat mittauskonseptit tuottivat lupaavia tuloksia mahdollistaen uudentyyppisten mittausten tekemisen. Saadut tulokset antavat ymmärtää että mittauskonseptien kehittämistä kannattaa jatkaa ja on todennäköistä että tämän kaltaiset mittausmenetelmät tulevat jo lähitulevaisuudessa leviämään laajempaan käyttöön kaukokartoituksessa

    QUANTIFICATION OF ERROR IN AVHRR NDVI DATA

    Get PDF
    Several influential Earth system science studies in the last three decades were based on Normalized Difference Vegetation Index (NDVI) data from Advanced Very High Resolution Radiometer (AVHRR) series of instruments. Although AVHRR NDVI data are known to have significant uncertainties resulting from incomplete atmospheric correction, orbital drift, sensor degradation, etc., none of these studies account for them. This is primarily because of unavailability of comprehensive and location-specific quantitative uncertainty estimates. The first part of this dissertation investigated the extent of uncertainty due to inadequate atmospheric correction in the widely used AVHRR NDVI datasets. This was accomplished by comparison with atmospherically corrected AVHRR data at AErosol RObotic NETwork (AERONET) sunphotometer sites in 1999. Of the datasets included in this study, Long Term Data Record (LTDR) was found to have least errors (precision=0.02 to 0.037 for clear and average atmospheric conditions) followed by Pathfinder AVHRR Land (PAL) (precision=0.0606 to 0.0418), and Top of Atmosphere (TOA) (precision=0.0613 to 0.0684). ` Although the use of field data is the most direct type of validation and is used extensively by the remote sensing community, it results in a single uncertainty estimate and does not account for spatial heterogeneity and the impact of spatial and temporal aggregation. These shortcomings were addressed by using Moderate Resolution Imaging Spectrometer (MODIS) data to estimate uncertainty in AVHRR NDVI data. However, before AVHRR data could be compared with MODIS data, the nonstationarity introduced by inter-annual variations in AVHRR NDVI data due to orbital drift had to be removed. This was accomplished by using a Bidirectional Reflectance Distribution Function (BRDF) correction technique originally developed for MODIS data. The results from the evaluation of AVHRR data using MODIS showed that in many regions minimal spatial aggregation will improve the precision of AVHRR NDVI data significantly. However temporal aggregation improved the precision of the data to a limited extent only. The research presented in this dissertation indicated that the NDVI change of ~0.03 to ~0.08 NDVI units in 10 to 20 years, frequently reported in recent literature, can be significant in some cases. However, unless spatially explicit uncertainty metrics are quantified for the specific spatiotemporal aggregation schemes used by these studies, the significance of observed differences between sites and temporal trends in NDVI will remain unknown
    corecore