183 research outputs found

    A Survey on the Project in title

    Full text link
    In this paper we present a survey of work that has been done in the project ldquo;Unsupervised Adaptive P300 BCI in the framework of chaotic theory and stochastic theoryrdquo;we summarised the following papers, (Mohammed J Alhaddad amp; 2011), (Mohammed J. Alhaddad amp; Kamel M, 2012), (Mohammed J Alhaddad, Kamel, amp; Al-Otaibi, 2013), (Mohammed J Alhaddad, Kamel, amp; Bakheet, 2013), (Mohammed J Alhaddad, Kamel, amp; Al-Otaibi, 2014), (Mohammed J Alhaddad, Kamel, amp; Bakheet, 2014), (Mohammed J Alhaddad, Kamel, amp; Kadah, 2014), (Mohammed J Alhaddad, Kamel, Makary, Hargas, amp; Kadah, 2014), (Mohammed J Alhaddad, Mohammed, Kamel, amp; Hagras, 2015).We developed a new pre-processing method for denoising P300-based brain-computer interface data that allows better performance with lower number of channels and blocks. The new denoising technique is based on a modified version of the spectral subtraction denoising and works on each temporal signal channel independently thus offering seamless integration with existing pre-processing and allowing low channel counts to be used. We also developed a novel approach for brain-computer interface data that requires no prior training. The proposed approach is based on interval type-2 fuzzy logic based classifier which is able to handle the usersrsquo; uncertainties to produce better prediction accuracies than other competing classifiers such as BLDA or RFLDA. In addition, the generated type-2 fuzzy classifier is learnt from data via genetic algorithms to produce a small number of rules with a rule length of only one antecedent to maximize the transparency and interpretability for the normal clinician. We also employ a feature selection system based on an ensemble neural networks recursive feature selection which is able to find the effective time instances within the effective sensors in relation to given P300 event. The basic principle of this new class of techniques is that the trial with true activation signal within each block has to be different from the rest of the trials within that block. Hence, a measure that is sensitive to this dissimilarity can be used to make a decision based on a single block without any prior training. The new methods were verified using various experiments which were performed on standard data sets and using real-data sets obtained from real subjects experiments performed in the BCI lab in King Abdulaziz University. The results were compared to the classification results of the same data using previous methods. Enhanced performance in different experiments as quantitatively assessed using classification block accuracy as well as bit rate estimates was confirmed. It will be shown that the produced type-2 fuzzy logic based classifier will learn simple rules which are easy to understand explaining the events in question. In addition, the produced type-2 fuzzy logic classifier will be able to give better accuracies when compared to BLDA or RFLDA on various human subjects on the standard and real-world data sets

    Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment

    Get PDF
    Deep reinforcement learning (RL) is used as a strategy to teach robot agents how to autonomously learn complex tasks. While sparsity is a natural way to define a reward in realistic robot scenarios, it provides poor learning signals for the agent, thus making the design of good reward functions challenging. To overcome this challenge learning from human feedback through an implicit brain-computer interface (BCI) is used. We combined a BCI with deep RL for robot training in a 3-D physical realistic simulation environment. In a first study, we compared the feasibility of different electroencephalography (EEG) systems (wet- vs. dry-based electrodes) and its application for automatic classification of perceived errors during a robot task with different machine learning models. In a second study, we compared the performance of the BCI-based deep RL training to feedback explicitly given by participants. Our findings from the first study indicate the use of a high-quality dry-based EEG-system can provide a robust and fast method for automatically assessing robot behavior using a sophisticated convolutional neural network machine learning model. The results of our second study prove that the implicit BCI-based deep RL version in combination with the dry EEG-system can significantly accelerate the learning process in a realistic 3-D robot simulation environment. Performance of the BCI-based trained deep RL model was even comparable to that achieved by the approach with explicit human feedback. Our findings emphasize the usage of BCI-based deep RL methods as a valid alternative in those human-robot applications where no access to cognitive demanding explicit human feedback is available

    Investigation into BCI illiteracy and the use of BCI for relaxation

    Get PDF

    A chromatic transient visual evoked potential based encoding/decoding approach for brain-computer interface

    Get PDF
    This paper presents a new encoding/decoding approach to brain-computer interface (BCI) based on chromatic transient visual evoked potential (CTVEP). The proposed CTVEP-based encoding/decoding approach is designed to provide a safer and more comfortable stimulation method than the conventional VEP-based stimulation methods for BCI without loss of efficiency. For this purpose, low-frequency isoluminant chromatic stimuli are time-encoded to serve as different input commands for BCI control, and the superior comfortableness of the proposed stimulation method is validated by a survey. A combination of diversified signal processing techniques are further employed to decode the information from CTVEP. Based on experimental results, a properly designed configuration of the CTVEP-based stimulation method and a tailored signal processing framework are developed. It is demonstrated that high performance (at information transfer rate: 58.0 bits/min, accuracy: 94.9%, false alarm rate: 1.3%) for BCI can be achieved by means of the CTVEP-based encoding/decoding approach. It turns out that to achieve such good performance, only simple signal processing algorithms with very low computational complexity are required, which makes the method suitable for the development of a practical BCI system. A preliminary prototype of such a system has been implemented with demonstrated applicability. © 2011 IEEE.published_or_final_versio

    A low-cost computational method for characterizing event-related potentials for BCI applications and beyond

    Full text link
    Event-related potentials (ERPs) are important neurophysiological markers widely used in scientific, medical and engineering contexts. Proper ERP detection contributes to widening the scope of use and, in general, improving functionality. The morphology and latency of ERPs are variable among subject sessions, which complicates their detection. Although variability is an intrinsic feature of neuronal activity, it can be addressed with novel views on ERP detection techniques. In this paper, we propose an agile method for characterizing and thus detecting variable ERPs, which keeps track of their temporal and spatial information through the continuous measurement of the area under the curve in ERP components. We illustrate the usefulness of the proposed ERP characterization for electrode selection in brain-computer interfaces (BCIs) and compare the results with other standard methods. We assess ERP classification for BCI use with Bayesian linear discriminant analysis (BLDA) and cross-validation. We also evaluate performance with both the information transfer rate and BCI utility. The results of our validation tests show that this characterization helps to take advantage of the information on the evolution of positive and negative ERP components and, therefore, to efficiently select electrodes for optimized ERP detection. The proposed method improves the classification accuracy and bitrate of all sets of electrodes analyzed. Furthermore, the method is robust between different day sessions. Our work contributes to the efficient detection of ERPs, manages inter- and intrasubject variability, decreases the computational cost of classic detection methods and contributes to promoting low-cost personalized brain-computer interfaces.This work was supported by the Predoctoral Research Grants of the Ecuador Government through of the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) under Grant 2015-AR2Q9086, and by the Ministerio de Ciencia, Innovación y Universidades/FEDER under the Spanish Government Grants: TIN2017-84452-R, DPI2015-65833-P and PGC2018-095895-B-I00

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Wireless Sensors for Brain Activity—A Survey

    Get PDF
    Over the last decade, the area of electroencephalography (EEG) witnessed a progressive move from high-end large measurement devices, relying on accurate construction and providing high sensitivity, to miniature hardware, more specifically wireless wearable EEG devices. While accurate, traditional EEG systems need a complex structure and long periods of application time, unwittingly causing discomfort and distress on the users. Given their size and price, aside from their lower sensitivity and narrower spectrum band(s), wearable EEG devices may be used regularly by individuals for continuous collection of user data from non-medical environments. This allows their usage for diverse, nontraditional, non-medical applications, including cognition, BCI, education, and gaming. Given the reduced need for standardization or accuracy, the area remains a rather incipient one, mostly driven by the emergence of new devices that represent the critical link of the innovation chain. In this context, the aim of this study is to provide a holistic assessment of the consumer-grade EEG devices for cognition, BCI, education, and gaming, based on the existing products, the success of their underlying technologies, as benchmarked by the undertaken studies, and their integration with current applications across the four areas. Beyond establishing a reference point, this review also provides the critical and necessary systematic guidance for non-medical EEG research and development efforts at the start of their investigation.</jats:p

    Wireless Sensors for Brain Activity — A Survey

    Get PDF
    Over the last decade, the area of electroencephalography (EEG) witnessed a progressive move from high-end large measurement devices, relying on accurate construction and providing high sensitivity, to miniature hardware, more specifically wireless wearable EEG devices. While accurate, traditional EEG systems need a complex structure and long periods of application time, unwittingly causing discomfort and distress on the users. Given their size and price, aside from their lower sensitivity and narrower spectrum band(s), wearable EEG devices may be used regularly by individuals for continuous collection of user data from non-medical environments. This allows their usage for diverse, nontraditional, non-medical applications, including cognition, BCI, education, and gaming. Given the reduced need for standardization or accuracy, the area remains a rather incipient one, mostly driven by the emergence of new devices that represent the critical link of the innovation chain. In this context, the aim of this study is to provide a holistic assessment of the consumer-grade EEG devices for cognition, BCI, education, and gaming, based on the existing products, the success of their underlying technologies, as benchmarked by the undertaken studies, and their integration with current applications across the four areas. Beyond establishing a reference point, this review also provides the critical and necessary systematic guidance for non-medical EEG research and development efforts at the start of their investigation

    The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    Get PDF
    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies

    Study of the Functional Brain Connectivity and Lower-Limb Motor Imagery Performance After Transcranial Direct Current Stimulation

    Get PDF
    The use of transcranial direct current stimulation (tDCS) has been related to the improvement of motor and learning tasks. The current research studies the effects of an asymmetric tDCS setup over brain connectivity, when the subject is performing a motor imagery (MI) task during five consecutive days. A brain–computer interface (BCI) based on electroencephalography is simulated in offline analysis to study the effect that tDCS has over different electrode configurations for the BCI. This way, the BCI performance is used as a validation index of the effect of the tDCS setup by the analysis of the classifier accuracy of the experimental sessions. In addition, the relationship between the brain connectivity and the BCI accuracy performance is analyzed. Results indicate that tDCS group, in comparison to the placebo sham group, shows a higher significant number of connectivity interactions in the motor electrodes during MI tasks and an increasing BCI accuracy over the days. However, the asymmetric tDCS setup does not improve the BCI performance of the electrodes in the intended hemisphereThis research has been carried out in the framework of the project Walk — Controlling lower-limb exoskeletons by means of BMIs to assist people with walking disabilities (RTI2018-096677-B-I00Funded by the Spanish Ministry of Science and Innovation, the Spanish State Agency of Research and the European Union through the European Regional Development Fund;by the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital (Generalitat Valenciana) and the European Social Fund in the framework of the project ‘Desarrollo de nuevas interfaces cerebro-m´aquina para la rehabilitaci`on de miembro inferior’ (GV/2019/009).Also, the Mexican Council of Science and Technology (CONACyT) provided J. A. Gaxiola-Tirado his scholarshi
    corecore