324 research outputs found

    An assessment of the statistical distribution of Random Telegraph Noise Time Constants

    Get PDF
    As transistor sizes are downscaled, a single trapped charge has a larger impact on smaller devices and the Random Telegraph Noise (RTN) becomes increasingly important. To optimize circuit design, one needs assessing the impact of RTN on the circuit and this can only be accomplished if there is an accurate statistical model of RTN. The dynamic Monte Carlo modelling requires the statistical distribution functions of both the amplitude and the capture/emission time (CET) of traps. Early works were focused on the amplitude distribution and the experimental data of CETs were typically too limited to establish their statistical distribution reliably. In particular, the time window used has been often small, e.g. 10 sec or less, so that there are few data on slow traps. It is not known whether the CET distribution extracted from such a limited time window can be used to predict the RTN beyond the test time window. The objectives of this work are three fold: to provide the long term RTN data and use them to test the CET distributions proposed by early works; to propose a methodology for characterizing the CET distribution for a fabrication process efficiently; and, for the first time, to verify the long term prediction capability of a CET distribution beyond the time window used for its extraction

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Silicon Nanowire FinFETs

    Get PDF

    Electrical Characterisation of III-V Nanowire MOSFETs

    Get PDF
    The ever increasing demand for faster and more energy-efficient electricalcomputation and communication presents severe challenges for the semiconductor industry and particularly for the metal-oxidesemiconductorfield-effect transistor (MOSFET), which is the workhorse of modern electronics. III-V materials exhibit higher carrier mobilities than the most commonly used MOSFET material Si so that the realisation of III-V MOSFETs can enable higher operation speeds and lower drive voltages than that which is possible in Si electronics. A lowering of the transistor drive voltage can be further facilitated by employing gate-all-around nanowire geometries or novel operation principles. However, III-V materials bring about their own challenges related to material quality and to the quality of the gate oxide on top of a III-V MOSFET channel.This thesis presents detailed electrical characterisations of two types of (vertical) III-V nanowire transistors: MOSFETs based on conventional thermionic emission; and Tunnel FETs, which utilise quantum-mechanical tunnelling instead to control the device current and reach inverse subthreshold slopes below the thermal limit of 60 mV/decade. Transistor characterisations span over fourteen orders of magnitude in frequency/time constants and temperatures from 11 K to 370 K.The first part of the thesis focusses on the characterisation of electrically active material defects (‘traps’) related to the gate stack. Low-frequency noise measurements yielded border trap densities of 10^18 to 10^20 cm^-3 eV^-1 and hysteresis measurements yielded effective trap densities – projected to theoxide/semiconductor interface – of 2x10^12 to 3x10^13 cm^-2 eV^-1. Random telegraph noise measurements revealed that individual oxide traps can locally shift the channel energy bands by a few millielectronvolts and that such defects can be located at energies from inside the semiconductor band gap all the way into the conduction band.Small-signal radio frequency (RF) measurements revealed that parts of the wide oxide trap distribution can still interact with carriers in the MOSFET channel at gigahertz frequencies. This causes frequency hystereses in the small-signal transconductance and capacitances and can decrease the RF gains by a few decibels. A comprehensive small-signal model was developed, which takes into account these dispersions, and the model was applied to guide improvements of the physical structure of vertical RF MOSFETs. This resulted in values for the cutoff frequency fT and the maximum oscillation frequency fmax of about 150 GHz in vertical III-V nanowire MOSFETs.Bias temperature instability measurements and the integration of (lateral) III-V nanowire MOSFETs in a back end of line process were carried out as complements to the main focus of this thesis. The results of this thesis provide a broad perspective of the properties of gate oxide traps and of the RF performance of III-V nanowire transistors and can act as guidelines for further improvement and finally the integration of III-V nanowire MOSFETs in circuits

    Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    Get PDF
    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10(17) m(-2). We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching. (C) 2015 Author(s).Dutch Polymer Institute (DPI), BISTABLE [704]; Fundacao para Ciencia e Tecnologia (FCT) through the research Instituto de Telecommunicacoes (IT-Lx); project Memristor based Adaptive Neuronal Networks (MemBrAiNN) [PTDC/CTM-NAN/122868/2010]; European Community Seventh Framework Programme FP7', ONE-P [212311]; Dutch Ministry of Education, Culture and Science (Gravity Program) [024.001.035]info:eu-repo/semantics/publishedVersio

    Experimental Characterization of Random Telegraph Noise and Hot Carrier Aging of Nano-scale MOSFETs

    Get PDF
    One of the emerging challenges in the scaling of MOSFETs is the reliability of ultra-thin gate dielectrics. Various sources can cause device aging, such as hot carrier aging (HCA), negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), and time dependent device breakdown (TDDB). Among them, hot carrier aging (HCA) has attracted much attention recently, because it is limiting the device lifetime. As the channel length of MOSFETs becomes smaller, the lateral electrical field increases and charge carriers become sufficiently energetic (“hot”) to cause damage to the device when they travel through the space charge region near the drain. Unlike aging that causes device parameters, such as threshold voltage, to drift in one direction, nano-scale devices also suffer from Random Telegraph Noise (RTN), where the current can fluctuate under fixed biases. RTN is caused by capturing/emitting charge carriers from/to the conduction channel. As the device sizes are reduced to the nano-meters, a single trap can cause substantial fluctuation in the current and threshold voltage. Although early works on HCA and RTN have improved the understanding, many issues remain unresolved and the aim of this project is to address these issues. The project is broadly divided into three parts: (i) an investigation on the HCA kinetics and how to predict HCA-induced device lifetime, (ii) a study of the interaction between HCA and RTN, and (iii) developing a new technique for directly measuring the RTN-induced jitter in the threshold voltage. To predict the device lifetime, a reliable aging kinetics is indispensable. Although early works show that HCA follows a power law, there are uncertainties in the extraction of the time exponent, making the prediction doubtful. A systematic experimental investigation was carried out in Chapter 4 and both the stress conditions and measurement parameters were carefully selected. It was found that the forward saturation current, commonly used in early work for monitoring HCA, leads to an overestimation of time exponents, because part of the damaged region is screened off by the space charges near the drain. Another source of errors comes from the inclusion of as-grown defects in the aging kinetics, which is not caused by aging. This leads to an underestimation of the time exponent. After correcting these errors, a reliable HCA kinetics is established and its predictive capability is demonstrated. There is confusion on how HCA and RTN interact and this is researched into in Chapter 5. The results show that for a device of average RTN, HCA only has a modest impact on RTN. RTN can either increase or decrease after HCA, depending on whether the local current under the RTN traps is rising or reducing. For a device of abnormally high RTN, RTN reduces substantially after HCA and the mechanism for this reduction is explored. The RTN-induced threshold voltage jitter, ∆Vth, is difficult to measure, as it is typically small and highly dynamic. Early works estimate this ∆Vth from the change in drain current and the accuracy of this estimation is not known. Chapter 6 focuses on developing a new ‘Trigger-When-Charged’ technique for directly measuring the RTN-induced ∆Vth. It will be shown that early works overestimate ∆Vth by a factor of two and the origin of this overestimation is investigated. This thesis consists of seven chapters. Chapter 1 introduces the project and its objectives. A literature review is given in Chapter 2. Chapter 3 covers the test facilities, measurement techniques, and devices used in this project. The main experimental results and analysis are given in Chapters 4-6, as described above. Finally, Chapter 7 concludes the project and discusses future works
    • 

    corecore