15,699 research outputs found

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Smart working technologies in industry 4.0 : contributions to different manufacturing activities and workers’ skills

    Get PDF
    A Indústria 4.0 é considerada a quarta revolução industrial porque utiliza uma ampla integração de tecnologias de informação e de operação na fabricação industrial. Apesar dessa perspectiva tecnológica, diversos estudos vêm evidenciando a importância de considerar o fator humano para o desenvolvimento de um sistema de manufatura inteligente. Nesse sentido, a dimensão denominada como Smart Working precisa ser melhor investigada, uma vez que entender como as tecnologias afetam os trabalhadores e as habilidades desses são cruciais para o bom desempenho das fábricas. Em razão disso, o objetivo desta dissertação foi entender como as Smart Working Technologies (SWT) podem contribuir para as atividades e as habilidades dos trabalhadores da manufatura. Para tanto, primeiramente foi realizada uma análise abrangente da literatura para identificar as SWT e seus impactos nas capacidades dos trabalhadores em suas atividades de manufatura. Deste modo, foram analisados 80 artigos que relacionam as SWT em oito atividades de manufatura. Posteriormente, foi selecionada uma das SWT mais relevantes conforme a literatura, os robôs colaborativos, para identificar os efeitos das tecnologias nas habilidades dos trabalhadores. Deste modo, foram analisados 138 casos de aplicação reportados por uma das empresas fornecedoras líderes mundiais, bem como três entrevistas com empresas adotantes da tecnologia. Os resultados apontam que existem 15 SWT que podem ser implementadas nas atividades de manufatura e relacionadas às capacidades dos trabalhadores. Além disso, os resultados também apontam que podem existir quatro efeitos das SWT nas habilidades dos trabalhadores. Estes achados demonstram que de acordo com a estratégia da empresa uma SWT pode impactar de diferentes formas os trabalhadores.Industry 4.0 is considered the fourth industrial revolution because it uses a broad integration of information and operating technologies in industrial manufacturing. Despite this technological perspective, several studies have highlighted the importance of considering the human factor to develop a smart manufacturing system. In this sense, the Smart Working dimension needs to be further investigated since understanding how technologies affect workers and their skills are crucial for factories' good performance. Therefore, the objective of this dissertation was to understand how Smart Working Technologies (SWT) can contribute to the activities and skills of manufacturing workers. To this end, firstly a systematic literature review was carried out to identify SWTs and their impacts on workers' capabilities in their manufacturing activities. Thus, 80 articles relating to SWT in eight manufacturing activities were analyzed. Subsequently, one of the most relevant SWTs according to the literature, collaborative robots, was selected to identify the effects of technologies on workers' skills. In this way, 138 application cases reported by one of the world's leading supplier companies were analyzed, as well as three interviews with companies that adopted the technology. The results show that there are 15 SWT that can be implemented in manufacturing activities and related to workers' capabilities. In addition, the results also point out that there may be four effects of SWT on workers' skills. According to the company's strategy, these findings demonstrate that an SWT can impact workers in different ways

    Anthropocentric perspective of production before and within Industry 4.0

    Get PDF
    Abstract This paper presents a systematic literature review (SLR) of the anthropocentric perspective of production before and after (or, better, within) Industry 4.0. We identify central research clusters regarding traditional Anthropocentric Production Systems (APS) and Anthropocentric Cyber Physical Production Systems. By comparing the two perspectives, we are able to analyse new emerging paradigms in anthropocentric production caused by Industry 4.0. We further make prediction of the future role of the human operator, his needed knowledge and capabilities and how assistance systems support the Operator 4.0. Our paper gives a brief outlook of current and needed future research. It builds grounds for further scholarly discussion on the role of humans in the factory of the future

    Smart operators: How Industry 4.0 is affecting the worker's performance in manufacturing contexts

    Get PDF
    Abstract The fourth industrial revolution is affecting the workforce at strategical, tactical, and operational levels and it is leading to the development of new careers with precise and specific skills and competence. The implementation of enabling technologies in the industrial context involves new types of interactions between operators and machines, interactions that transform the industrial workforce and have significant implications for the nature of the work. The incoming generation of Smart Operators 4.0 is characterised by intelligent and qualified operators who perform the work with the support of machines, interact with collaborative robots and advanced systems, use technologies such as wearable devices and augmented and virtual reality. The correct interaction between the workforce and the various enabling technologies of the 4.0 paradigm represents a crucial aspect of the success of the smart factory. However, this interaction is affected by the variability of human behaviour and its reliability, which can strongly influence the quality, safety, and productivity standards. For this reason, this paper aims to provide a clear and complete analysis of the different types of smart operators and the impact of 4.0 enabling technologies on the performance of operators, evaluating the stakeholders involved, the type of interaction, the changes required for operators in terms of added and removed work, and the new performance achieved by workers

    Smart operators: How augmented and virtual technologies are affecting the worker's performance in manufacturing contexts

    Get PDF
    Purpose: The correct interaction between the workforce and augmented, virtual, and mixed reality technologies represents a crucial aspect of the success of the smart factory. This interaction is, indeed, affected by the variability of human behavior and its reliability, which can strongly influence the quality, safety, and productivity standards. For this reason, this paper aims to provide a clear and complete analysis of the impacts of these technologies on the performance of operators. Design/methodology/approach: A Systematic Literature Review (SLR) was conducted to identify peer-reviewed papers that focused on the implementation of augmented and virtual technologies in manufacturing systems and their effects on human performance. Findings: In total, 61 papers were selected and thoroughly analyzed. The findings of this study reveal that Augmented, Virtual and Mixed Reality can be applied for several applications in manufacturing systems with different types of devices, that involve various advantages and disadvantages. The worker’s performance that are influencing by the use of these technologies are above all time to complete a task, error rate and mental and physical workload. Originality/value: Over the years Augmented, Virtual and Mixed Reality technologies in manufacturing systems have been investigated by researchers. Several studies mostly focused on technological issues, have been conducted. The role of the operator, whose tasks may be influenced positively or negatively by the use of new devices, has been hardly ever analyzed and a deep analysis of human performance affected by these technologies is missing. This study represents a preliminary analysis to fill this gap. The results obtained from the SLR allowed us to develop a conceptual framework that investigates the current state-of-the-art knowledge about the topic and highlights gaps in the current researchPeer Reviewe

    Adopting augmented reality in the age of industrial digitalisation

    Get PDF
    Industrial augmented reality (IAR) is one of the key pillars of the industrial digitalisation concepts, which connects workers with the physical world through overlaying digital information. Augmented reality (AR) market is increasing but still its adoption levels are low in industry. While companies strive to learn and adopt AR, there are chances that they fail in such endeavours due to lack of understanding key challenges and success factors in this space. This study identifies critical success factors and challenges for IAR implementation projects based on field experiments. The broadly used technology, organisation, environment (TOE) framework was used as a theoretical basis for the study, while 22 experiments were conducted for validation. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in the literature.No funding source. 22 experiments were conducted with in-kind support (employee time and company access) from Beckhoff Automation, Herman Miller and fluiconnecto as well as University of Cambridge students (see Table 1)
    corecore