52 research outputs found

    Modeling and analysis on bipedal wheel-legged robot with sprawling mechanism

    Get PDF
    Mobile robots have a wide range of applications; they can be used not only in service industries such as manufacturing, agriculture, healthcare, and other specialized fields. As a result, the technology of mobile robots has garnered global attention. Most legged mobile robot use mammal-type mechanism because of the robot can walk at narrow space and can walk faster than sprawling mechanism. However, this type of legged robot has low wide range motion and foot placement is limited as well. Moreover, the stability of the mammal type is lower than sprawling makes this configuration able to locate its center of gravity at low position with wider support polygon. Therefore, this project has proposed a hybrid design and modelled of bipedal robot with combination of mammal and sprawling mechanism. The DH parameters is done in kinematics solution for both forward and inverse kinematics of each leg. Forward kinematics equation is used to measure the output Cartesian position robot from the feedback signal of each joint of each leg. On the other hand, inverse kinematic is used to translate the Cartesian trajectory input to the angular input for each joint of each leg. The multibody dynamic structure of the robot is approached in modeling this robot using MATLAB SIMULINK-Simscape to simulate the motion of the robot and the leg trajectory of the leg motion is designed for robot’s leg working envelope test. The dynamic performance angle are observed from the simulation results for each joint and the input angle is same as an output angle. Moreover, the results of trajectory motion and robot workspace is equality with the desired motion

    A Dynamics and Stability Framework for Avian Jumping Take-off

    Full text link
    Jumping take-off in birds is an explosive behaviour with the goal of providing a rapid transition from ground to airborne locomotion. An effective jump is predicated on the need to maintain dynamic stability through the acceleration phase. The present study concerns understanding how birds retain control of body attitude and trajectory during take-off. Cursory observation suggests that stability is achieved with relatively little cost. However, analysis of the problem shows that the stability margins during jumping are actually very small and that stability considerations play a significant role in selection of appropriate jumping kinematics. We use theoretical models to understand stability in prehensile take-off (from a perch) and also in non-prehensile take-off (from the ground). The primary instability is tipping, defined as rotation of the centre of gravity about the ground contact point. Tipping occurs when the centre of pressure falls outside the functional foot. A contribution of the paper is the development of graphical tipping stability margins for both centre of gravity location and acceleration angle. We show that the nose-up angular acceleration extends stability bounds forward and is hence helpful in achieving shallow take-offs. The stability margins are used to interrogate simulated take-offs of real birds using published experimental kinematic data from a guinea fowl (ground take-off) and a diamond dove (perch take-off). For the guinea fowl the initial part of the jump is stable, however simulations exhibit a stuttering instability not observed experimentally that is probably due to absence of compliance in the idealised joints. The diamond dove model confirms that the foot provides an active torque reaction during take-off, extending the range of stable jump angles by around 45{\deg}.Comment: 21 pages, 11 figures; supplementary material: https://figshare.com/s/86b12868d64828db0d5d; DOI: 10.6084/m9.figshare.721056

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion

    Get PDF
    Biped robots hold promise as terrestrial explorers because they require a single discrete foothold to place their next step. However, biped robots are multi-input multi-output dynamically unstable machines. This makes walking on rough terrain difficult at best. Progress has been made with non-periodic rough terrain like stairs or inclines with fully active walking machines. Terrain that requires the walker to change its gait pattern from a standard walk is still problematic. Most walking machines have difficulty detecting or responding to the small perturbations induced by this type of terrain. These small perturbations can lead to unstable gait cycles and possibly a fall. The Intelligent Systems and Automation Lab at the University of Kansas has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small perturbations caused by periodic rough terrain. The first walking machine prototype, referred to as Jaywalker has two main custom actuation systems. The first is the hip ratchet system. It allows the walker to have either a passive or active hip swing. The second is the hybrid parallel ankle actuator. This new actuator uses a pneumatic ram and stepper motor in parallel to produce an easily controlled high torque output. In open loop control it has less than a 1° tracking error and 0.065 RPM velocity error compared to a standard stepper motor. Step testing was conducted using the Jaywalker, with a passive hip, to determine if a walker with significant leg mass could walk without full body actuation. The results of testing show the Jaywalker is ultimately not capable of walking with a passive hip. However, the walking motion is fine until the terminal stance phase. At this point the legs fall quickly towards the ground as the knee extends the shank. This quick step phenomenon is caused by increased speeds and forces about the leg and hip caused by the extension of the shank. This issue can be overcome by fully actuating the hip, or by adding counterbalances to the legs about the hip

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    Modeling of human movement for the generation of humanoid robot motion

    Get PDF
    La robotique humanoïde arrive a maturité avec des robots plus rapides et plus précis. Pour faire face à la complexité mécanique, la recherche a commencé à regarder au-delà du cadre habituel de la robotique, vers les sciences de la vie, afin de mieux organiser le contrôle du mouvement. Cette thèse explore le lien entre mouvement humain et le contrôle des systèmes anthropomorphes tels que les robots humanoïdes. Tout d’abord, en utilisant des méthodes classiques de la robotique, telles que l’optimisation, nous étudions les principes qui sont à la base de mouvements répétitifs humains, tels que ceux effectués lorsqu’on joue au yoyo. Nous nous concentrons ensuite sur la locomotion en nous inspirant de résultats en neurosciences qui mettent en évidence le rôle de la tête dans la marche humaine. En développant une interface permettant à un utilisateur de commander la tête du robot, nous proposons une méthode de contrôle du mouvement corps-complet d’un robot humanoïde, incluant la production de pas et permettant au corps de suivre le mouvement de la tête. Cette idée est poursuivie dans l’étude finale dans laquelle nous analysons la locomotion de sujets humains, dirigée vers une cible, afin d’extraire des caractéristiques du mouvement sous forme invariants. En faisant le lien entre la notion “d’invariant” en neurosciences et celle de “tâche cinématique” en robotique humanoïde, nous développons une méthode pour produire une locomotion réaliste pour d’autres systèmes anthropomorphes. Dans ce cas, les résultats sont illustrés sur le robot humanoïde HRP2 du LAAS-CNRS. La contribution générale de cette thèse est de montrer que, bien que la planification de mouvement pour les robots humanoïdes peut être traitée par des méthodes classiques de robotique, la production de mouvements réalistes nécessite de combiner ces méthodes à l’observation systématique et formelle du comportement humain. ABSTRACT : Humanoid robotics is coming of age with faster and more agile robots. To compliment the physical complexity of humanoid robots, the robotics algorithms being developed to derive their motion have also become progressively complex. The work in this thesis spans across two research fields, human neuroscience and humanoid robotics, and brings some ideas from the former to aid the latter. By exploring the anthropological link between the structure of a human and that of a humanoid robot we aim to guide conventional robotics methods like local optimization and task-based inverse kinematics towards more realistic human-like solutions. First, we look at dynamic manipulation of human hand trajectories while playing with a yoyo. By recording human yoyo playing, we identify the control scheme used as well as a detailed dynamic model of the hand-yoyo system. Using optimization this model is then used to implement stable yoyo-playing within the kinematic and dynamic limits of the humanoid HRP-2. The thesis then extends its focus to human and humanoid locomotion. We take inspiration from human neuroscience research on the role of the head in human walking and implement a humanoid robotics analogy to this. By allowing a user to steer the head of a humanoid, we develop a control method to generate deliberative whole-body humanoid motion including stepping, purely as a consequence of the head movement. This idea of understanding locomotion as a consequence of reaching a goal is extended in the final study where we look at human motion in more detail. Here, we aim to draw to a link between “invariants” in neuroscience and “kinematic tasks” in humanoid robotics. We record and extract stereotypical characteristics of human movements during a walking and grasping task. These results are then normalized and generalized such that they can be regenerated for other anthropomorphic figures with different kinematic limits than that of humans. The final experiments show a generalized stack of tasks that can generate realistic walking and grasping motion for the humanoid HRP-2. The general contribution of this thesis is in showing that while motion planning for humanoid robots can be tackled by classical methods of robotics, the production of realistic movements necessitate the combination of these methods with the systematic and formal observation of human behavior

    Design of Lower Legs of Mithra, a High-Performance Backdrivable Humanoid Robot

    Get PDF
    This thesis presents the design of the knee and ankle of Mithra, a new humanoid robot that aims to be an energy-efficient and highly agile machine. Mithra makes use of new optimization metrics for legged robots to develop a system capable of mimicking human movement. A series of low-impedance, high-torque actuator systems were developed with the goal of creating lightweight, powerful, and robust motion. The structure of Mithra\u27s legs mimics the human structure in leg segment length and weight proportions. Detailed design and analysis were conducted in order to allow Mithra to be a robust and maintainable system. Mithra will serve as a human movement controls research platform and is mechanically capable of running at 3 m/s
    corecore