116 research outputs found

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    To Achieve An Optimal Tradeoff Between P2p Overlay Maintenance And Video Sharing Efficiency In Osn’s

    Get PDF
    Video sharing has been a gradually more popular application in OSNs facilitating users to share their personal videos or interesting videos they found with their friends. However OSN’s additional progress is strictly caught up by the inherent limits of the conventional client/server architecture of its video sharing system which is not only costly in terms of server storage and bandwidth but also not scalable with the high amount of users and video content in OSNs. The efforts have been dedicated to perk up the client/server architecture for video sharing with the peer-to-peer (P2P) architecture being the most promising. P2P-based video sharing has been used in on demand video streaming.The dimension reveals that mainly of the viewers of a user’s videos are the user’s close friends, most video views are driven by social relationships and the rest are driven by interests and viewers of the same video tend to live in the same location. Based on our observations we propose Social Tube a system that discover the social relationship interest resemblance and location to improve the presentation of video sharing in OSNs. Specifically an OSN has a social network (SN)-based P2P overlay construction algorithm that come together peers based on their social relationships and interests.

    A QoE based performance study of mobile peer-to-peer live video streaming

    Get PDF
    Peer-to-peer (P2P) Mobile Ad Hoc Networks (MANETs) are widely envisioned to be a practical platform to mobile live video streaming applications (e.g., mobile IPTV). However, the performance of such a streaming solution is still largely unknown. As such, in this paper, we aim to quantify the streaming performance using a Quality of Experience (QoE) based approach. Our simulation results indicate that video streaming performance is highly sensitive to the video chunk size. Specifically, if the chunk size is small, performance, in terms of both QoE and QoS, is guaranteed but at the expense of a higher overhead. On the other hand, if chunk size is increased, performance can degrade quite rapidly. Thus, it needs some careful fine tuning of chunk size to obtain satisfactory QoE performance. © 2012 IEEE.published_or_final_versio

    LiveShift: Mesh-pull live and time-shifted P2P video streaming

    Get PDF
    The popularity of video sharing over the Internet has increased significantly. High traffic generated by such applications at the source can be better distributed using a peer-to-peer (P2P) overlay. Unlike most P2P systems, LiveShift combines both live and on-demand video streaming while video is transmitted through the peer-to-peer network in a live fashion, all peers participate in distributed storage. This adds the ability to replay time-shifted streams from other peers in a distributed and scalable manner. This paper describes an adaptive fully-distributed mesh-pull protocol that supports the envisioned use case and a set of policies that enable efficient usage of resources, discussing interesting trade-offs encountered. User-focused evaluation results, including both channel switching and time shifting behavior, show that the proposed system provides good quality of experience for most users, in terms of infrequent stalling, low playback lag, and a small proportion of skipped blocks in all the scenarios studied, even in presence of churn

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Large-scale sensor-rich video management and delivery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore