26 research outputs found

    Data Center Power System Emulation and GaN-Based High-Efficiency Rectifier with Reactive Power Regulation

    Get PDF
    Data centers are indispensable for today\u27s computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost. In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost. First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center\u27s dynamic performance. Also, a converter-based data center power emulator serving as an all-in-one load is developed. The power emulator has been verified experimentally in a regional network in the HTB. Dynamic performances during voltage sag events and server load variations are emulated and discussed. Then, a gallium nitride (GaN) based critical conduction mode (CRM) totem-pole power factor correction (PFC) rectifier is designed as the single-phase front-end rectifier to improve the data center power distribution efficiency. Zero voltage switching (ZVS) modulation with ZVS time margin is developed, and a digital variable ON-time control is employed. A hardware prototype of the PFC rectifier is built and demonstrated with high efficiency. To achieve low input current total harmonic distortion (iTHD), current distortion mechanisms are analyzed, and effective solutions for mitigating current distortion are proposed and validated with experiments. The idea of providing reactive power compensation with the rack-level GaN-based front-end rectifiers is proposed for data centers to reduce data center\u27s power loss and system cost. Full-range ZVS modulation is extended into non-unity PF condition and a GaN-based T-type totem-pole rectifier with reactive power control is proposed. A hardware prototype of the proposed rectifier is built and demonstrated experimentally with high power efficiency and flexible reactive power regulation. Experimental emulation of the whole data center system also validates the capability of reactive power compensation by the front-end rectifiers, which can also generate or consume more reactive power to achieve flexible PF regulation and help support the power system

    Investigation of a GaN-Based Power Supply Topology Utilizing Solid State Transformer for Low Power Applications

    Get PDF
    Gallium nitride (GaN) power devices exhibit a much lower gate capacitance for a similar on-resistance than its silicon counterparts, making it highly desirable for high-frequency operation in switching converters, which leads to their significant benefits on power density, cost, and system volume. High-density switching converters are being realized with GaN power devices due to their high switching speeds that reduce the size of energy-storage circuit components. The purpose of this dissertation research is to investigate a new isolated GaN AC/DC switching converter based on solid-state transformer configuration with a totem-pole power factor corrector (PFC) front-end, a half-bridge series-resonant converter (SRC) for power conversion, and a current-doubler rectifier (CDR) at its output. A new equivalent circuit model for the converter is constructed consisting of a loss-free resistor model for the PFC rectifier with first harmonic approximation model for the SRC and the CDR. Then, state-space analysis is performed to derive the converter transfer function in order to design the controllers to yield sufficient phase margins. The converter offers the advantages of voltage regulation feature of the solid-state transformer, low harmonics and close-to-unity power factor of the PFC rectifier, soft-switching of the half-bridge SRC, reduced size of the high-frequency transformer, and smaller leakage inductance of the CDR which is used for low-voltage high-current applications as the CDR draws half of the load current in the transformer secondary side yielding less copper losses. A high-frequency nanocrystalline toroid transformer, based on a modified equation to determine its leakage inductance, is designed and fabricated to satisfy the performance specifications of the converter. A meticulously planned gate driving strategy together with a Kelvin-source return circuitry is used to mitigate Miller effects, minimize gate ringing, and minimize the parasitics of the pull-down and pull-up loops of the converter. A new programming method that combines MATLAB Simulink embedded coder with code composer studio for the TMS320F28335 digital signal processor (DSP) controller is developed and demonstrated. Finally, the GaN-based AC/DC converter is experimentally verified for a 120Vac to 48Vdc/60Vdc conversion operating at 100 kHz for various loadings

    GaN-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer

    Get PDF
    Wireless power transfer (WPT) has attracted great attention from industry and academia due to high charging flexibility. However, the efficiency of WPT is lower and the cost is higher than the wired power transfer approaches. Efforts including converter optimization, power delivery architecture improvement, and coils have been made to increase system efficiency.In this thesis, new power delivery architectures in the WPT of consumer electronics have been proposed to improve the overall system efficiency and increase the power density.First, a two-stage transmitter architecture is designed for a 100 W WPT system. After comparing with other topologies, the front-end ac-dc power factor correction (PFC) rectifier employs a totem-pole rectifier. A full bridge 6.78 MHz resonant inverter is designed for the subsequent stage. An impedance matching network provides constant transmitter coil current. The experimental results verify the high efficiency, high PF, and low total harmonic distortion (THD).Then, a single-stage transmitter is derived based on the verified two-stage structure. By integration of the PFC rectifier and full bridge inverter, two GaN FETs are saved and high efficiency is maintained. The integrated DCM operated PFC rectifier provides high PF and low THD. By adopting a control scheme, the transmitter coil current and power are regulated. A simple auxiliary circuit is employed to improve the light load efficiency. The experimental results verify the achievement of high efficiency.A closed-loop control scheme is implemented in the single-stage transmitter to supply multiple receivers simultaneously. With a controlled constant transmitter current, the system provides a smooth transition during dynamically load change. ZVS detection circuit is proposed to protect the transmitter from continuous hard switching operation. The control scheme is verified in the experiments.The multiple-reciever WPT system with the single-stage transmitter is investigated. The system operating range is discussed. The method of tracking optimum system efficiency is studied. The system control scheme and control procedure, targeting at providing a wide system operating range, robust operation and capability of tracking the optimized system efficiency, are proposed. Experiment results demonstrate the WPT system operation

    A GALLIUM NITRIDE INTEGRATED ONBOARD CHARGER

    Get PDF
    Compared to Silicon metal–oxide–semiconductor field-effect transistors (MOSFETs), Gallium Nitride (GaN) devices have a significant reduction in gate charge, output capacitance, and zero reverse recovery charge, enabling higher switching frequency operation and efficient power conversion. GaN devices are gaining momentum in power electronic systems such as electric vehicle (EV) charging system, due to their promises to significantly enhance the power density and efficiency. In this dissertation, a GaN-based integrated onboard charger (OBC) and auxiliary power module (APM) is proposed for EVs to ensure high efficiency, high frequency, high power density, and capability of bidirectional operation. The high switching frequency operation enabled by the GaN devices and the integration of OBC and APM bring many unique challenges, which are addressed in this dissertation. An important challenge is the optimal design of high-frequency magnetics for a high-frequency GaN-based power electronic interface. Another challenge is to achieve power flow management among three active ports while minimizing the circulating power. Furthermore, the impact of circuit layout parasitics could significantly deteriorate the system interface, due to the sensitivity of GaN device switching characteristics. In this work, the aforementioned challenges have been addressed. First, a comprehensive analysis of the front-end AC-DC power factor correction stage is presented, covering a detailed magnetic modeling technique to address the high-frequency magnetics challenge. Second, the modeling and control of a three-port DC-DC converter, interfacing the AC-DC stage, high-voltage traction battery and low-voltage battery, are discussed to address the power flow challenge. Advanced control methodologies are developed to realize power flow management while maintaining minimum circulating power and soft switching. Furthermore, a new three-winding high-frequency transformer design with improved power density and efficiency is achieved using a genetic-algorithm-based optimization approach. Finally, a GaN-based integrated charger prototype is developed to validate the proposed theoretical hypothesis. The experimental results showed that the GaN-based charging system has the capability of achieving simultaneous charging (G2B) of both HV and LV batteries with a peak efficiency of 95%

    An Integrated Single-phase On-board Charger

    Get PDF
    With the growing demand for transportation electrification, plug-in electric vehicles (PEVs), and plug-in hybrid electric vehicles (PHEVs), cumulatively called electric vehicles (EVs) are drawing more and more attention. The on-board charger (OBC), which is the power electronics interface between the power grid and the high voltage traction battery, is an important part for charging EVs. Besides the OBC, every EV is equipped with another separate power unit called the auxiliary power module (APM) to charge the low voltage (LV) auxiliary battery, which supplies all the electronics on car including audio, air conditioner, lights and controllers. The main target of this work is a novel way to integrate both units together to achieve a charger design that is not only capable of bi-directional operation with high efficiency, but also higher gravimetric and volumetric power density, as compared with those of the existing OBCs and APMs combined. To achieve this target, following contributions are made: (i) a three-port integrated DC/DC converter, which combines OBC and APM together through an innovative integration method; (ii) an innovative zero-crossing current spike compensation for interleaved totem pole power factor correction (PFC) and (iii) a new phase-shift based control strategy to achieve a regulated power flow management with minimum circulating losses

    Power converters in WBG device technology for automotive applications and characterization setups for GaN power transistors

    Get PDF
    This PhD dissertation envisages the design of innovative power converters exploiting WBG devices to get state-of-the-art performance in products intended for industrial applications of automotive field. The collaborations with different specialized companies, provided the opportunity to access commercially-available state-of-the-art SiC and GaN technologies and the possibility to realize innovative converter prototypes. Concerning SiC technology, the complete design of a 350kW350kW Battery Emulator instrument in collaboration with a company leader in the automotive testing sector, was carried out from scratch exploiting state-of-the-art SiC power-modules, planar magnetics and top-notch MCU technologies. Discrete high-voltage GaN switches were exploited in the Power Supplies design for automotive charger application to target improved performances compared to the market state-of-the-art. Specifically, two high-efficiency prototypes, an AC/DC converter and a DC/DC converter of 7.5kW7.5kW, have been realized for this purpose. To further investigate the characteristics of state-of-the-art GaN power devices two measurement set-ups have been designed. In particular, the trapping phenomenon causing the collapse of drain current during ON-state with a consequent degradation of ON-resistance has been analyzed

    Toward high-efficiency high power density single-phase DC-AC and AC-DC power conversion - architecture, topology and control

    Get PDF
    Power conversion between the single-phase AC grid and DC sources or loads plays an indispensable role in modern electrical energy system for both generation and consumption. The renewable resources and electrical energy storage are integrated to the grid through inverters. Telecoms, data centers and the rest of the digital world is powered by the grid through rectifiers. Existing and emerging applications all demand the DC-AC and AC-DC systems to be not only more efficient to reduce energy consumption, but also more compact to reduce cost and improve portability. Therefore, new AC-DC and DC-AC converter designs that improve the efficiency and power density of the system is a critical area of research and is the focus of this dissertation. The recent development of wide band-gap devices stimulates a new round of improvement on efficiency and power density of AC-DC converters. However, despite the new transistors used, the fundamental system architecture and topology remain relatively unchanged, which is becoming the bottleneck for further improvement. This dissertation explores new architecture, topology and control to overcome this bottleneck, targeting an order-of-magnitude improvement on power density and comparable efficiency to the conventional design. The proposed solutions build on two key innovations: the series-stacked buffer architecture for twice-line-frequency power pulsation decoupling in single-phase AC-DC and DC-AC conversion, and the flying capacitor multilevel topology for power transfer and waveform conversion between AC and DC. This work provides complete solutions for these ideas, including the theoretical development, design procedure, control method, hardware implementation and experimental characterization

    A clamping circuit based voltage measurement system for high frequency flying capacitor multilevel inverters

    Get PDF
    In an era where high-frequency flying capacitor (FC) multilevel inverters (MLI) are increasingly gaining attention in energy conversion systems that push the boundaries of power density, the need for a compact, fast, and accurate FC voltage monitoring is also increasing. In this paper we designed and developed a new FC measurement system, based on precise sampling of the inverter switching node voltage, through a bidirectional clamping circuit. The deviation of FC voltages from their nominal values are extracted by solving a set of linear equations. With a single sensor per phase and no isolation requirements, as opposed to dozens of sensors in traditional FC monitoring, our approach results in significantly lower cost, complexity, and circuit-size. Detailed device-level simulations in LTspice and system-scale simulations in Matlab, validate the accuracy and speed of the proposed measurement system and the balancing strategy in steady state, abrupt load change and imbalance conditions. Experiments carried out in a 3-phase Gallium-Nitride 5-level inverter prototype, reveal a gain in precision and bandwidth that is more than 30 times that of conventional methods, at a fraction of their cost and footprint. The recorded performance renders the developed sensor an ideal solution for fast MLIs based on wide-bandgap technolog

    Switching Trajectory Control for High Voltage Silicon Carbide Power Devices with Novel Active Gate Drivers

    Get PDF
    The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability. However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs with XHV-6 package which are developed by CREE are approaching those of an ideal switch with high dv/dt and di/dt. The fast switching speed of SiC devices introduces challenges for the application since electromagnetic interference (EMI) noise and overshoot voltage can be serious. Also, the insulation should be carefully designed to prevent partial discharge. To address the aforementioned issues, this work investigates the switching behaviors of SiC power MOSFETs with mathematic models and the formation of EMI noise in a power converter. Based on the theoretical analysis, a model-based switching trajectory optimizing three-level active gate driver (AGD) is proposed. The proposed AGD has five operation modes, i.e., faster/normal/slower for the turn-on process and slower/normal for the turn-off process. The availability of multiple operation modes offers an extra degree of freedom to improve the switching performance for a particular application and enables it to be more versatile. The proposed AGD can provide higher switching speed adjustment resolution than the other AGDs, and this feature will allow the proposed AGD to fine tune the switching speed of SiC power devices. In addition, a novel model-based trajectory optimization strategy is proposed to determine the optimal gate driver output voltage by trading the EMI noise against the switching energy losses. For the 10 kV SiC power MOSFET, the detailed design considerations of the proposed AGD are demonstrated in this dissertation. The functionalities of the 3-L AGD are validated through the double pulse tests results with 1.2 kV and 10 kV SiC power MOSFETs

    Review and Characterization of Gallium Nitride Power Devices

    Get PDF
    Gallium Nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This thesis reviews the characteristics and commercial status of both vertical and lateral GaN power devices from the user perspective, providing the background necessary to understand the significance of these recent developments. Additionally, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic on-resistance, breakdown mechanisms, thermal design, device availability, and reliability qualification. Static and dynamic characterization was then performed across the full current, voltage, and temperature range of this device to enable effective GaN-based converter design. Static testing was performed with a curve tracer and precision impedance analyzer. A double pulse test setup was constructed and used to measure switching loss and time at the fastest achievable switching speed, and the subsequent overvoltages due to the fast switching were characterized. The results were also analyzed to characterize the effects of cross-talk in the active and synchronous devices of a phase-leg topology with enhancement-mode GaN HFETs. Based on these results and analysis, an accurate loss model was developed for the device under test. Based on analysis of these characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The consequences of the Miller effect during the turn-on transient were studied to show that no Miller plateau occurs, but rather a decreased gate voltage slope, followed by a sharp drop. The significance of this distinction is derived and explained. GaN performance at elevated temperature was also studied, because turn-on time increases significantly with temperature, and turn-on losses increase as a result. Based on this relationship, a temperature-dependent turn-on model and a linear scaling factor was proposed for estimating turn-on loss in e-mode GaN HFETs
    corecore