1,985 research outputs found

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Voltage and Reactive Power Control in Islanded Microgrids

    Get PDF
    Previous studies put on view lots of advantages and concerns for islanded microgrids (IMGs), whether it is initiated for emergency, intentionally planned or permanent island system purposes. From the concerns that have not been addressed yet, such as: 1) The ability of the distributed generation (DG) units to maintain equal reactive power sharing in a distribution system; 2) The ability of the DG units to maintain acceptable voltage boundary in the entire IMG; 3) The functionality of the existing voltage and reactive power (Volt/Var) DG, this thesis analyzes the complexity of voltage regulations in droop-controlled IMGs. A new multi-agent algorithm is proposed to satisfy the reactive power sharing and the voltage regulation requirements of IMGs. Also, the operation conflicts between DG units and Volt/Var controllers, such as shunt capacitors (SCs) and load-ratio control transformer (LRT) during the IMG mode of operation, are investigated in this thesis. Further, a new local control scheme for SCs and LRTs has been proposed to mitigate their operational challenges in IMGs

    Unified Power Quality Conditioner for Grid Integration of Wind Generators

    Get PDF
    A Unified Power Quality Conditioner (UPQC) is relatively a new member of the custom power device family. It is a comprehensive custom power device, with integrated shunt and series active filters. The cost of the device, which is higher than other custom power/FACTS devices, because of twin inverter structure and control complexity, will have to be justified by exploring new areas of application where the cost of saving power quality events outweighs the initial cost of installation. Distributed generation (such as wind generation) is one field where the UPQC can find its potential application. There has been a considerable increase in the power generation from wind farms. This has created the necessity for wind farms connectivity with the grid during power system faults, voltage sags and frequency variations. The application of active filters/custom power devices in the field of wind generation to provide reactive power compensation, additional fault ride through capability and to maintain Power Quality (PQ) at the point of common coupling is gaining popularity. Wind generation like other forms of distributed generation often relies on power electronics technology for flexible interconnection to the power grid. The application of power electronics in wind generation has resulted in improved power quality and increased energy capture. The rapid development in power electronics, which has resulted in high kVA rating of the devices and low price per kVA, encourages the application of such devices at distribution level. This work focuses on development of a laboratory prototype of a UPQC, and investigation of its application for the flexible grid integration of fixed and variable speed wind generators through dynamic simulation studies. A DSP based fully digital controller and interfacing hardware has been developed for a 24 kVA (12 kVA-shunt compensator and 12 kVA-series compensator) laboratory prototype of UPQC. The modular control approach facilitates the operation of the device either as individual series or shunt compensator or as a UPQC. Different laboratory tests have been carried out to demonstrate the effectiveness of developed control schemes.A simulation-based analysis is carried out to investigate the suitability of application of a UPQC to achieve Irish grid code compliance of a 2 MW Fixed Speed Induction Generator (FSIG). The rating requirement of the UPQC for the wind generation application has been investigated. A general principle is proposed to choose the practical and economical rating of the UPQC for this type of application. A concept of UPQC integrated Wind Generator (UPQC-WG) has been proposed. The UPQC-WG is a doubly fed induction machine with converters integrated in the stator and rotor circuits and is capable of adjustable speed operation. The operation of UPQC-WG under sub and super-synchronous speed range has been demonstrated. The Irish grid code compliance of the same has been demonstrated with a detailed dynamic simulation

    Flexible operation of grid-interfacing converters in distribution networks : bottom-up solutions to voltage quality enhancement

    Get PDF
    Due to the emerging application of distributed generation (DG), large numbers of DG systems are expected to deliver electricity into the distribution network in the near future. For the most part these systems are not ready for riding through grid disturbances and cannot mitigate unwanted influences on the grid. On the one hand, with the increasing use of sensitive and critical equipment by customers, the electricity network is required to serve high voltage quality. On the other hand, more and more unbalanced and nonlinear equipment, including DG units, is negatively affecting the power quality of distribution networks. To adapt to the future distribution network, the tendency for grid-interfacing converters will be to integrate voltage quality enhancement with DG functionality. In this thesis, the flexible operation of grid-interfacing converters in distribution networks is investigated for the purpose of voltage quality enhancement at both the grid and user sides. The research is carried out in a bottom-up fashion, from the low-level power electronics control, through the realization of individual system functionality, finally arriving at system-level concepts and implementation. Being essential to the control of grid-interfacing converters, both stationaryframe techniques for voltage detection and synchronization in disturbed grids, and asymmetrical current regulation are investigated. Firstly, a group of high performance filters for the detection of fundamental symmetrical sequences and harmonics under various grid conditions is proposed. The robustness of the proposed filters to small grid-frequency variation and their adaptability to large frequency change are discussed. Secondly, multiple reference frame current regulation is explored for dealing with unbalanced grid conditions. As a complement to the existing proportional resonant (PR) controllers, sequence-decoupled resonant (SDR) controllers are proposed for regulating individual symmetric sequences. Based on the modeling of a four-leg grid-connected system in different reference frames, three types of controllers, i.e. PI, PR, and proportional plus SDR controllers are compared. Grid-interactive control of distributed power generation, i.e. voltage unbalance compensation, grid-fault ride-through control and flexible power transfer, as well as the modeling of harmonic interaction, are all investigated. The in-depth study and analysis of these grid interactions show the grid-support possibilities and potential negative impact on the grid of inverter-based DG units, beyond their primary goal of power delivery. In order to achieve a co-operative voltage unbalance compensation based on distributed DG systems, two control schemes, namely voltage unbalance factor based control and negative-sequence admittance control, are proposed. The negativesequence voltages at the grid connection point can be compensated and mitigated by regulating the negative-sequence currents flowing between the grid and DG converters. Flexible active and reactive power control during unbalanced voltage dips is proposed that enables DG systems to enhance grid-fault ride-through capability and to adapt to various requirements for grid voltage support. By changing adaptable weighting factors, the compensation of oscillating power and the regulation of grid currents can be easily implemented. Two joint strategies for the simultaneous control of active and reactive power are derived, which maintain the adaptive controllability that can cope with multiple constraints in practical applications. The contribution of zero-sequence currents to active power control is also analyzed as a complement to the proposed control, which is based on positive- and negative-sequence components. Harmonic interaction between DG inverters and the grid is modeled and analyzed with an impedance-based approach. In order to mitigate the harmonic distortion in a polluted grid, it is proposed to specify output impedance limits as a design constraint for DG inverters. Results obtained from modeling, analysis, and simulations of a distribution network with aggregated DG inverters, show that the proposed method is a simple and effective way for estimating harmonic quasi-resonance problems. By integrating these proposed control strategies in a modified conventional series-parallel structure, we arrived at a group of grid-interfacing system topologies that is suitable for DG applications, voltage quality improvement, and flexible power transfer. A concrete laboratory system details the proposed concepts and specifies the practical problems related to control design. The introduction of multi-level control objectives illustrates that the proposed system can ride through voltage disturbances, can enhance the grid locally, and can continue the power transfer to and from the grid while high voltage quality is maintained for the local loads within the system module. A dual-converter laboratory set-up was built, with which the proposed concepts and practical implementation have been fully demonstrated

    Operation of a hybrid modular multilevel converter during grid voltage unbalance

    Get PDF
    The recently proposed parallel hybrid modular multilevel converter is considered to be a low loss, low component count converter with soft switching capability of the ‘main’ H-bridge. The converter has similar advantages to other emerging modular multilevel converter circuits being considered for HVDC power transmission and can be made compact which is desirable for offshore application. However, during ac network unbalance the individual ‘chain-links’ exchange unequal amounts of power with the grid which requires appropriate remedial action. This paper presents research into the performance of the converter and proposes a suitable control method that enables the converter to operate during grid voltage unbalance. The proposed control concept involves the use of asymmetric third harmonic voltage generation in the ‘chain-links’ of the converter to redistribute the power exchanged between the individual ‘chain-links’ and the grid. Mathematical analysis and simulation modelling with results are presented to support the work described
    corecore