29 research outputs found

    Reimagining Speech: A Scoping Review of Deep Learning-Powered Voice Conversion

    Full text link
    Research on deep learning-powered voice conversion (VC) in speech-to-speech scenarios is getting increasingly popular. Although many of the works in the field of voice conversion share a common global pipeline, there is a considerable diversity in the underlying structures, methods, and neural sub-blocks used across research efforts. Thus, obtaining a comprehensive understanding of the reasons behind the choice of the different methods in the voice conversion pipeline can be challenging, and the actual hurdles in the proposed solutions are often unclear. To shed light on these aspects, this paper presents a scoping review that explores the use of deep learning in speech analysis, synthesis, and disentangled speech representation learning within modern voice conversion systems. We screened 621 publications from more than 38 different venues between the years 2017 and 2023, followed by an in-depth review of a final database consisting of 123 eligible studies. Based on the review, we summarise the most frequently used approaches to voice conversion based on deep learning and highlight common pitfalls within the community. Lastly, we condense the knowledge gathered, identify main challenges and provide recommendations for future research directions

    Disentanglement Learning for Text-Free Voice Conversion

    Get PDF
    Voice conversion (VC) aims to change the perceived speaker identity of a speech signal from one to another, while preserving the linguistic content. Recent state-of-the-art VC systems typically are dependent on automatic speech recognition (ASR) models and they have gained great successes. Results of recent challenges show these VC systems have reached a level of performance close to real human voices. However, they are highly relying on the performance of the ASR models, which might experience degradations in practical applications because of the mismatch between training and test data. VC systems independent of ASR models are typically regarded as text-free systems. They commonly apply disentanglement learning methods to remove the speaker information of a speech signal, for example, vector quantisation (VQ) or instance normalisation (IN). However, text-free VC systems have not reached the same level of performance as text-dependent systems. This thesis mainly studies disentanglement learning methods for improving the performance of text-free VC systems. Three major contributions are summarised as follows. Firstly, in order to improve the performance of an auto-encoder based VC model, the information loss issue caused by the VQ of the model is studied. Two disentanglement learning methods are exploited to replace the VQ of the model. Experiments show that these two methods improve the naturalness and intelligibility performance of the model, but hurt the speaker similarity performance of the model. The reason for the degradation of the speaker similarity performance is studied in the further analysis experiments. Next, the performance and the robustness of Generative Adversarial Networks (GAN) based VC models are studied. In order to improve the performance and the robustness of an GAN based VC model, a new model is proposed. This new model introduces a new speaker adaptation layer for alleviating the information loss issue caused by a speaker adaptation method based on IN. Experiments show that the proposed model outperformed the baseline models on VC performance and robustness. The third contribution studies whether Self-Supervised Learning (SSL) based VC models can reach the same level of performance of the state-of-the-art text-dependent models. An encoder-decoder framework is established for experiments. In this framework, the performance of a VC systems implemented with a SSL model can be compared to a VC system implemented with an ASR model. Experiment results show that SSL based VC models can reach the same level of naturalness performance of the state-of-the-art text- dependent VC models. Also, SSL based VC models gained advantages on intelligibility performance when tested on out of domain target speakers. But they performed worse on speaker similarity

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    Deep learning methods in speaker recognition: a review

    Full text link
    This paper summarizes the applied deep learning practices in the field of speaker recognition, both verification and identification. Speaker recognition has been a widely used field topic of speech technology. Many research works have been carried out and little progress has been achieved in the past 5-6 years. However, as deep learning techniques do advance in most machine learning fields, the former state-of-the-art methods are getting replaced by them in speaker recognition too. It seems that DL becomes the now state-of-the-art solution for both speaker verification and identification. The standard x-vectors, additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory to DL, where they are the most effective

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field
    corecore