319 research outputs found

    Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster.

    Get PDF
    BackgroundDrosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences.ResultsWe found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection.ConclusionOur results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation

    The molecular basis of diel and seasonal rhythmicity in the copepod Calanus finmarchicus

    Get PDF
    The copepod Calanus finmarchicus has an ecological key position in the northern Atlantic pelagic food web and its life is characterized by diel and seasonal rhythmicity. Neither diel nor seasonal rhythmicity of C. finmarchicus are understood with regard to their mechanistic regulation. Endogenous clock systems are central in controlling rhythms in various terrestrial species, but have hardly been investigated in marine organisms. This thesis shows that C. finmarchicus possesses an endogenous circadian clock, that regulated 24h rhythms of gene expression, metabolic activity and vertical migration behavior. The thesis further suggests that clock-based day length measurement and an endogenous annual clock is involved in the regulation of seasonal rhythmicity. The findings on C. finmarchicus’ timing systems are further related to the extreme light conditions in polar environments, discussing potential effects of climate chance on the copepods rhythmicity and biology

    Genomic, Evolutionary and Functional Analyses of Diapause in Drosophila Melanogaster

    Get PDF
    Understanding the genetic basis of adaptation has been and remains to be one major goal of ecological and evolutionary genetics. The variation in diapause propensity in the model organism Drosophila melanogaster represents different life-history strategies underlying adaptation to regular and widespread environmental heterogeneity, thus provides an ideal model to study the genetic control of ecologically important complex phenotype. This work employs global genomic and transcriptomic approaches to identify genetic polymorphisms co-segregating with diapause propensity, as well as genes that are differentially regulated at the transcriptional level as a function of the diapause phenotype. I show that genetic polymorphisms co-segregating with diapause propensity are found throughout all major chromosomes, demonstrating that diapause is a multi-genic trait. I show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. I also demonstrate that genetic polymorphisms co-segregating with diapause propensity, as well as genes differentially expressed as a function of diapause are enriched for clinally varying and seasonal oscillating SNPs, supporting the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. In addition to global genomic and transcriptomic screens, I also performed functional analysis of one candidate polymorphism on the gene Crystalllin, which represents an intersection of multiple global screens related to seasonal adaptation. I show that this polymorphism affects patterns of gene expression and a subset of fitness-related phenotypes including diapause, in an environment-specific manner. Taken together, this work provide a holistic view of the genetic basis of a complex trait underlying climatic adaptation in wild populations of D. melanogaster, linking genetic polymorphism, gene regulation, organismal phenotype, population dynamics and environmental parameters

    Genomic, Evolutionary and Functional Analyses of Diapause in Drosophila Melanogaster

    Get PDF
    Understanding the genetic basis of adaptation has been and remains to be one major goal of ecological and evolutionary genetics. The variation in diapause propensity in the model organism Drosophila melanogaster represents different life-history strategies underlying adaptation to regular and widespread environmental heterogeneity, thus provides an ideal model to study the genetic control of ecologically important complex phenotype. This work employs global genomic and transcriptomic approaches to identify genetic polymorphisms co-segregating with diapause propensity, as well as genes that are differentially regulated at the transcriptional level as a function of the diapause phenotype. I show that genetic polymorphisms co-segregating with diapause propensity are found throughout all major chromosomes, demonstrating that diapause is a multi-genic trait. I show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. I also demonstrate that genetic polymorphisms co-segregating with diapause propensity, as well as genes differentially expressed as a function of diapause are enriched for clinally varying and seasonal oscillating SNPs, supporting the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. In addition to global genomic and transcriptomic screens, I also performed functional analysis of one candidate polymorphism on the gene Crystalllin, which represents an intersection of multiple global screens related to seasonal adaptation. I show that this polymorphism affects patterns of gene expression and a subset of fitness-related phenotypes including diapause, in an environment-specific manner. Taken together, this work provide a holistic view of the genetic basis of a complex trait underlying climatic adaptation in wild populations of D. melanogaster, linking genetic polymorphism, gene regulation, organismal phenotype, population dynamics and environmental parameters

    (Micro)evolutionary changes and the evolutionary potential of bird migration

    No full text
    Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here

    Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect diapause is an important biological process which involves many life-history parameters important for survival and reproductive fitness at both individual and population level. <it>Drosophila montana</it>, a species of <it>D. virilis </it>group, has a profound photoperiodic reproductive diapause that enables the adult flies to survive through the harsh winter conditions of high latitudes and altitudes. We created a custom-made microarray for <it>D. montana </it>with 101 genes known to affect traits important in diapause, photoperiodism, reproductive behaviour, circadian clock and stress tolerance in model Drosophila species. This array gave us a chance to filter out genes showing expression changes during photoperiodic reproductive diapause in a species adapted to live in northern latitudes with high seasonal changes in environmental conditions.</p> <p>Results</p> <p>Comparisons among diapausing, reproducing and young <it>D. montana </it>females revealed expression changes in 24 genes on microarray; for example in comparison between diapausing and reproducing females one gene (<it>Drosophila cold acclimation gene, Dca</it>) showed up-regulation and 15 genes showed down-regulation in diapausing females. Down-regulation of seven of these genes was specific to diapause state while in five genes the expression changes were linked with the age of the females rather than with their reproductive status. Also, qRT-PCR experiments confirmed <it>couch potato </it>(<it>cpo</it>) gene to be involved in diapause of <it>D. montana</it>.</p> <p>Conclusions</p> <p>A candidate gene microarray proved to offer a practical and cost-effective way to trace genes that are likely to play an important role in photoperiodic reproductive diapause and further in adaptation to seasonally varying environmental conditions. The present study revealed two genes, <it>Dca </it>and <it>cpo</it>, whose role in photoperiodic diapause in <it>D. montana </it>is worth of studying in more details. Also, further studies using the candidate gene microarray with more specific experimental designs and target tissues may reveal additional genes with more restricted expression patterns.</p
    • …
    corecore