184 research outputs found

    DNN adaptation by automatic quality estimation of ASR hypotheses

    Full text link
    In this paper we propose to exploit the automatic Quality Estimation (QE) of ASR hypotheses to perform the unsupervised adaptation of a deep neural network modeling acoustic probabilities. Our hypothesis is that significant improvements can be achieved by: i)automatically transcribing the evaluation data we are currently trying to recognise, and ii) selecting from it a subset of "good quality" instances based on the word error rate (WER) scores predicted by a QE component. To validate this hypothesis, we run several experiments on the evaluation data sets released for the CHiME-3 challenge. First, we operate in oracle conditions in which manual transcriptions of the evaluation data are available, thus allowing us to compute the "true" sentence WER. In this scenario, we perform the adaptation with variable amounts of data, which are characterised by different levels of quality. Then, we move to realistic conditions in which the manual transcriptions of the evaluation data are not available. In this case, the adaptation is performed on data selected according to the WER scores "predicted" by a QE component. Our results indicate that: i) QE predictions allow us to closely approximate the adaptation results obtained in oracle conditions, and ii) the overall ASR performance based on the proposed QE-driven adaptation method is significantly better than the strong, most recent, CHiME-3 baseline.Comment: Computer Speech & Language December 201

    A detection-based pattern recognition framework and its applications

    Get PDF
    The objective of this dissertation is to present a detection-based pattern recognition framework and demonstrate its applications in automatic speech recognition and broadcast news video story segmentation. Inspired by the studies of modern cognitive psychology and real-world pattern recognition systems, a detection-based pattern recognition framework is proposed to provide an alternative solution for some complicated pattern recognition problems. The primitive features are first detected and the task-specific knowledge hierarchy is constructed level by level; then a variety of heterogeneous information sources are combined together and the high-level context is incorporated as additional information at certain stages. A detection-based framework is a â divide-and-conquerâ design paradigm for pattern recognition problems, which will decompose a conceptually difficult problem into many elementary sub-problems that can be handled directly and reliably. Some information fusion strategies will be employed to integrate the evidence from a lower level to form the evidence at a higher level. Such a fusion procedure continues until reaching the top level. Generally, a detection-based framework has many advantages: (1) more flexibility in both detector design and fusion strategies, as these two parts can be optimized separately; (2) parallel and distributed computational components in primitive feature detection. In such a component-based framework, any primitive component can be replaced by a new one while other components remain unchanged; (3) incremental information integration; (4) high level context information as additional information sources, which can be combined with bottom-up processing at any stage. This dissertation presents the basic principles, criteria, and techniques for detector design and hypothesis verification based on the statistical detection and decision theory. In addition, evidence fusion strategies were investigated in this dissertation. Several novel detection algorithms and evidence fusion methods were proposed and their effectiveness was justified in automatic speech recognition and broadcast news video segmentation system. We believe such a detection-based framework can be employed in more applications in the future.Ph.D.Committee Chair: Lee, Chin-Hui; Committee Member: Clements, Mark; Committee Member: Ghovanloo, Maysam; Committee Member: Romberg, Justin; Committee Member: Yuan, Min

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research

    Audio self-supervised learning: a survey

    Get PDF
    Inspired by the humans' cognitive ability to generalise knowledge and skills, Self-Supervised Learning (SSL) targets at discovering general representations from large-scale data without requiring human annotations, which is an expensive and time consuming task. Its success in the fields of computer vision and natural language processing have prompted its recent adoption into the field of audio and speech processing. Comprehensive reviews summarising the knowledge in audio SSL are currently missing. To fill this gap, in the present work, we provide an overview of the SSL methods used for audio and speech processing applications. Herein, we also summarise the empirical works that exploit the audio modality in multi-modal SSL frameworks, and the existing suitable benchmarks to evaluate the power of SSL in the computer audition domain. Finally, we discuss some open problems and point out the future directions on the development of audio SSL

    Robust learning of acoustic representations from diverse speech data

    Get PDF
    Automatic speech recognition is increasingly applied to new domains. A key challenge is to robustly learn, update and maintain representations to cope with transient acoustic conditions. A typical example is broadcast media, for which speakers and environments may change rapidly, and available supervision may be poor. The concern of this thesis is to build and investigate methods for acoustic modelling that are robust to the characteristics and transient conditions as embodied by such media. The first contribution of the thesis is a technique to make use of inaccurate transcriptions as supervision for acoustic model training. There is an abundance of audio with approximate labels, but training methods can be sensitive to label errors, and their use is therefore not trivial. State-of-the-art semi-supervised training makes effective use of a lattice of supervision, inherently encoding uncertainty in the labels to avoid overfitting to poor supervision, but does not make use of the transcriptions. Existing approaches that do aim to make use of the transcriptions typically employ an algorithm to filter or combine the transcriptions with the recognition output from a seed model, but the final result does not encode uncertainty. We propose a method to combine the lattice output from a biased recognition pass with the transcripts, crucially preserving uncertainty in the lattice where appropriate. This substantially reduces the word error rate on a broadcast task. The second contribution is a method to factorise representations for speakers and environments so that they may be combined in novel combinations. In realistic scenarios, the speaker or environment transform at test time might be unknown, or there may be insufficient data to learn a joint transform. We show that in such cases, factorised, or independent, representations are required to avoid deteriorating performance. Using i-vectors, we factorise speaker or environment information using multi-condition training with neural networks. Specifically, we extract bottleneck features from networks trained to classify either speakers or environments. The resulting factorised representations prove beneficial when one factor is missing at test time, or when all factors are seen, but not in the desired combination. The third contribution is an investigation of model adaptation in a longitudinal setting. In this scenario, we repeatedly adapt a model to new data, with the constraint that previous data becomes unavailable. We first demonstrate the effect of such a constraint, and show that using a cyclical learning rate may help. We then observe that these successive models lend themselves well to ensembling. Finally, we show that the impact of this constraint in an active learning setting may be detrimental to performance, and suggest to combine active learning with semi-supervised training to avoid biasing the model. The fourth contribution is a method to adapt low-level features in a parameter-efficient and interpretable manner. We propose to adapt the filters in a neural feature extractor, known as SincNet. In contrast to traditional techniques that warp the filterbank frequencies in standard feature extraction, adapting SincNet parameters is more flexible and more readily optimised, whilst maintaining interpretability. On a task adapting from adult to child speech, we show that this layer is well suited for adaptation and is very effective with respect to the small number of adapted parameters

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Learning representations for speech recognition using artificial neural networks

    Get PDF
    Learning representations is a central challenge in machine learning. For speech recognition, we are interested in learning robust representations that are stable across different acoustic environments, recording equipment and irrelevant inter– and intra– speaker variabilities. This thesis is concerned with representation learning for acoustic model adaptation to speakers and environments, construction of acoustic models in low-resource settings, and learning representations from multiple acoustic channels. The investigations are primarily focused on the hybrid approach to acoustic modelling based on hidden Markov models and artificial neural networks (ANN). The first contribution concerns acoustic model adaptation. This comprises two new adaptation transforms operating in ANN parameters space. Both operate at the level of activation functions and treat a trained ANN acoustic model as a canonical set of fixed-basis functions, from which one can later derive variants tailored to the specific distribution present in adaptation data. The first technique, termed Learning Hidden Unit Contributions (LHUC), depends on learning distribution-dependent linear combination coefficients for hidden units. This technique is then extended to altering groups of hidden units with parametric and differentiable pooling operators. We found the proposed adaptation techniques pose many desirable properties: they are relatively low-dimensional, do not overfit and can work in both a supervised and an unsupervised manner. For LHUC we also present extensions to speaker adaptive training and environment factorisation. On average, depending on the characteristics of the test set, 5-25% relative word error rate (WERR) reductions are obtained in an unsupervised two-pass adaptation setting. The second contribution concerns building acoustic models in low-resource data scenarios. In particular, we are concerned with insufficient amounts of transcribed acoustic material for estimating acoustic models in the target language – thus assuming resources like lexicons or texts to estimate language models are available. First we proposed an ANN with a structured output layer which models both context–dependent and context–independent speech units, with the context-independent predictions used at runtime to aid the prediction of context-dependent states. We also propose to perform multi-task adaptation with a structured output layer. We obtain consistent WERR reductions up to 6.4% in low-resource speaker-independent acoustic modelling. Adapting those models in a multi-task manner with LHUC decreases WERRs by an additional 13.6%, compared to 12.7% for non multi-task LHUC. We then demonstrate that one can build better acoustic models with unsupervised multi– and cross– lingual initialisation and find that pre-training is a largely language-independent. Up to 14.4% WERR reductions are observed, depending on the amount of the available transcribed acoustic data in the target language. The third contribution concerns building acoustic models from multi-channel acoustic data. For this purpose we investigate various ways of integrating and learning multi-channel representations. In particular, we investigate channel concatenation and the applicability of convolutional layers for this purpose. We propose a multi-channel convolutional layer with cross-channel pooling, which can be seen as a data-driven non-parametric auditory attention mechanism. We find that for unconstrained microphone arrays, our approach is able to match the performance of the comparable models trained on beamform-enhanced signals
    corecore