102,461 research outputs found

    Distance learning of foreign languages

    Get PDF
    doi: 10.1017/S0261444806003727This article provides a critical overview of the field of distance language learning, challenging the way in which the field is often narrowly conceptualised as the development of technology-mediated language learning opportunities. Early sections focus on issues of concept and definition and both theoretical and pedagogical perspectives on the field. Emphasis is placed on evident shifts from a concern with structural and organisational issues to a focus on transactional issues associated with teaching/learning opportunities within emerging paradigms for distance language learning. The next section reviews choices and challenges in incorporating technology into distance language learning environments, foregrounding decisions about technology made in particular sociocultural contexts, the contribution of ‘low-end’ technologies and research directions in developing new learning spaces and in using online technologies. The investigation of learner contributions to distance language learning is an important avenue of enquiry in the field, given the preoccupation with technology and virtual learning environments, and this is the subject of section six. The two final sections identify future research directions and provide a series of conclusions about research and practice in distance language learning as technology-mediated interactions increasingly come to influence the way we think about the processes of language learning and teaching

    Applying forces to elastic network models of large biomolecules using a haptic feedback device

    Get PDF
    Elastic network models of biomolecules have proved to be relatively good at predicting global conformational changes particularly in large systems. Software that facilitates rapid and intuitive exploration of conformational change in elastic network models of large biomolecules in response to externally applied forces would therefore be of considerable use, particularly if the forces mimic those that arise in the interaction with a functional ligand. We have developed software that enables a user to apply forces to individual atoms of an elastic network model of a biomolecule through a haptic feedback device or a mouse. With a haptic feedback device the user feels the response to the applied force whilst seeing the biomolecule deform on the screen. Prior to the interactive session normal mode analysis is performed, or pre-calculated normal mode eigenvalues and eigenvectors are loaded. For large molecules this allows the memory and number of calculations to be reduced by employing the idea of the important subspace, a relatively small space of the first M lowest frequency normal mode eigenvectors within which a large proportion of the total fluctuation occurs. Using this approach it was possible to study GroEL on a standard PC as even though only 2.3% of the total number of eigenvectors could be used, they accounted for 50% of the total fluctuation. User testing has shown that the haptic version allows for much more rapid and intuitive exploration of the molecule than the mouse version

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    Teaching and learning in virtual worlds: is it worth the effort?

    Get PDF
    Educators have been quick to spot the enormous potential afforded by virtual worlds for situated and authentic learning, practising tasks with potentially serious consequences in the real world and for bringing geographically dispersed faculty and students together in the same space (Gee, 2007; Johnson and Levine, 2008). Though this potential has largely been realised, it generally isn’t without cost in terms of lack of institutional buy-in, steep learning curves for all participants, and lack of a sound theoretical framework to support learning activities (Campbell, 2009; Cheal, 2007; Kluge & Riley, 2008). This symposium will explore the affordances and issues associated with teaching and learning in virtual worlds, all the time considering the question: is it worth the effort

    Synchronous communication technologies for language learning: Promise and challenges in research and pedagogy

    Get PDF
    We propose a definition of synchronous communication based on joint attention, noting that in certain mediated communication settings joint attention is a matter of perception rather than determinable fact. The most salient properties of synchronous computer-mediated communication (SCMC) are real-time pressure to communicate and a greater degree of social presence relative to asynchronous communication. These properties underlie the benefits and challenges of SCMC for language learning, which we discuss under three headings: (1) SCMC as learning tool; (2) SCMC as target competence; and (3) SCMC as setting for learner dialogue, intracultural and intercultural. We survey research themes in SCMC and preview the contributions of the Special Issue. Finally, we identify questions for future research

    Transforming pre-service teacher curriculum: observation through a TPACK lens

    Get PDF
    This paper will discuss an international online collaborative learning experience through the lens of the Technological Pedagogical Content Knowledge (TPACK) framework. The teacher knowledge required to effectively provide transformative learning experiences for 21st century learners in a digital world is complex, situated and changing. The discussion looks beyond the opportunity for knowledge development of content, pedagogy and technology as components of TPACK towards the interaction between those three components. Implications for practice are also discussed. In today’s technology infused classrooms it is within the realms of teacher educators, practising teaching and pre-service teachers explore and address effective practices using technology to enhance learning
    • 

    corecore