2,050 research outputs found

    Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach

    Get PDF
    Large-Eddy Simulations (LES) with the first order Conditional Moment Closure (CMC) approach of a nitrogen-diluted hydrogen jet, igniting in a turbulent co-flowing hot air stream, are discussed. A detailed mechanism (nine species, 19 reactions) is used to represent the chemistry. Our study covers the following aspects: CFD mesh resolution; CMC mesh resolution; inlet boundary conditions and conditional scalar dissipation rate modelling. The Amplitude Mapping Closure for the conditional scalar dissipation rate produces acceptable results. We also compare different options to calculate conditional quantities in CMC resolution. The trends in the experimental observations are in general well reproduced. The auto-ignition length decreases with an increase in co-flow temperature and increases with increase in co-flow velocity. The phenomena are not purely chemically controlled: the turbulence and mixing play also affect the location of auto-ignition. In order to explore the effect of turbulence, two options were applied: random noise and turbulence generator based on digital filter. It was found that stronger turbulence promotes ignition

    The subgrid-scale scalar variance under supercritical pressure conditions

    Get PDF
    To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the β-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model

    LES-CMC simulations of different auto-ignition regimes of hydrogen in a hot turbulent air Co-flow

    Get PDF
    Large-Eddy Simulation (LES) results in combination with first-order Conditional Moment Closure (CMC) are presented for a hydrogen jet, diluted with nitrogen, issued into a turbulent co-flowing hot air stream. The fuel mixes with the co-flow air, ignites and forms a lifted-like flame. Global trends in the experimental observations are in general well reproduced: the auto-ignition length decreases with increase in co-flow temperature and increases with increase in co-flow velocity. In the experiments, the co-flow temperature was varied, so that different auto-ignition regimes, including low Damkohler number situations, were obtained (no ignition, random spots, flashback and lifted flame). All regimes are recovered in the simulations. Auto-ignition is found to be the stabilizing mechanism. The impact of different detailed chemistry mechanisms on the auto-ignition predictions is discussed. With increasing air temperature, the differences between the mechanisms considered diminish. The evolution of temperature, H2O, H, HO2 and OH from inert to burning conditions is discussed in mixture fraction space

    Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    Get PDF
    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber: radiation, convection and conduction of heat over walls. A staggered approach is used to couple the reactive flow field to the heat conduction through the solid and both domains are solved using two implementations of the same code. Numerical results are compared against experimental data and an assessment of thermal boundary conditions to improve the prediction of the reactive flow field is given.The research leading to these results has received funding through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7, 2007–2013) under the Grant agreement No. FP7-290042 for the project COPA-GT as well as the European Union’s Horizon 2020 Programme (2014–2020) and from Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project, Grant agreement No. 689772. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación (RES). Finally, the authors would like to thank O. Lammel for the useful discussions and kindly providing the data for the comparison.Peer ReviewedPostprint (published version

    Unsteady flamelet progress variable modeling of reacting diesel jets

    Get PDF
    Accurate modeling of turbulence/chemistry interactions in turbulent reacting diesel jets is critical to the development of predictive computational tools for diesel engines. The models should be able to predict the transient physical and chemical processes in the jets such as ignition and flame lift-off. In the first part of this work, an existing unsteady flamelet progress variable (UFPV) model is employed in Reynolds-averaged Navier-Stokes (RANS) simulations and large-eddy simulations (LES) to assess its accuracy. The RANS simulations predict that ignition occurs toward the leading tip of the jet, followed by ignition front propagation toward the stoichiometric surface, and flame propagation upstream along the stoichiometric surface until the flame stabilizes at the lift-off height. The LES, on the other hand, predicts ignition at multiple points in the jet, followed by flame development from the ignition kernels, merger of the different flames and then stabilization. The UFPV model assumes that combustion occurs in thin zones known as flamelets and turbulent strain characterized by the scalar dissipation rate modifies the flame structure. Since the flamelet is thinner than the smallest grid size employed in RANS or LES, the effect of the turbulence is modeled through probability distribution functions of the independent variables. The accuracy of the assumptions of the model is assessed in this work through direct numerical simulations (DNS) which resolves the flame. The DNS is carried out in turbulent mixing layers since the combustion in a diesel jet occurs in the fuel/air mixing layer surrounding the jet. ^ The DNS results show that the flamelet model is applicable but that its implementation in the UFPV model is flawed because the effects of expansion due to heat release and increase in diffusivity due to rise in temperature are not accounted for in the formulation of the scalar dissipation rate. A new diffusivity-corrected flamelet model is proposed which leads to an improved prediction of flame development. Furthermore, it is shown that the most commonly used approach to calculate the scalar dissipation rate in LES of reacting flows leads to large errors when the LES grid size is large. The DNS results are used to determine the best model for the filtered scalar dissipation rate and its PDF under diesel engine conditions. A new model is derived for the variance of the scalar dissipation rate. The DNS results are also used to compare the performance of the UFPV model with the Perfectly Stirred Reactor (PSR) model predictions. It is shown that the UFPV model performance is superior for turbulent intensities and grid sizes encountered in diesel engine application

    Turbulent mixing

    Get PDF
    The ability of turbulent flows to effectively mix entrained fluids to a molecular scale is a vital part of the dynamics of such flows, with wide-ranging consequences in nature and engineering. It is a considerable experimental, theoretical, modeling, and computational challenge to capture and represent turbulent mixing which, for high Reynolds number (Re) flows, occurs across a spectrum of scales of considerable span. This consideration alone places high-Re mixing phenomena beyond the reach of direct simulation, especially in high Schmidt number fluids, such as water, in which species diffusion scales are one and a half orders of magnitude smaller than the smallest flow scales. The discussion below attempts to provide an overview of turbulent mixing; the attendant experimental, theoretical, and computational challenges; and suggests possible future directions for progress in this important field

    Modelling extinction and reignition in turbulent flames

    Get PDF
    The presented work attempts to extend the conditional moment closure method for noon-premixed. turbulent combustion to predict extinction and reignition phenomena in turbulent flames. The conditional moment closure method is one of a????class of conserved scalar modelling approaches in turbulent non-premixed combustion. where chemistry is treated as mainly dependend on the mixing of oxidizer and fuel. However. as designers of combustion devices aim for higher turbulence rates to enhance mixing and promote combustion, chemical conversion is not solely determined by the rate at which fuel and oxidizer are mixed, but kinetic effects become important. Therefore it is necessary in these cases. to consider a second variable to govern the evolution of the chemical system. This variable will parameterize the chemical conversion process from cold. mixed reactants at fixed eguivalence ratio to an eguilibrium state. Equations describing the chemical system as a function of these two variables, the conserved scalar, commonly referred to as mixture fraction and the progress variable. can be derived and constitute the doubly conditioned moment closure equations. However, solution of this set of equations is computationally expensive and key parameters describing the rate of dissipation of the progress variable, which is a reactive scalar, are not yet fully understood. By considering conditional fluctuations of the progress variable, applying simple relationships for scalar dissipation and using a pre-computed functional dependence of conditional moments on the progress variable, the effect of double conditioning on the chemical source term and on the overall chemistry predictions can be examined. The methodology is tested for its capability to predict the turbulent. piloted flames of the Sandia D-F series. These laboratory flames show an increasing degree of local extinction and reignition due to varying turbulence levels. Hence they provide an ideal benchmark for the study of models trying to predict these phenomena.Imperial Users onl
    • …
    corecore