849 research outputs found

    A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks

    Full text link
    This is the peer reviewed version of the following article: Moravejosharieh, Amirhossein, Lloret, Jaime. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks.International Journal of Communication Systems, 29, 7, 1269-1292. DOI: 10.1002/dac.3098, which has been published in final form at http://doi.org/10.1002/dac.3098. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving[EN] Wireless body sensor networks are offered to meet the requirements of a diverse set of applications such as health-related and well-being applications. For instance, they are deployed to measure, fetch and collect human body vital signs. Such information could be further used for diagnosis and monitoring of medical conditions. IEEE 802.15.4 is arguably considered as a well-designed standard protocol to address the need for low-rate, low-power and low-cost wireless body sensor networks. Apart from the vast deployment of this technology, there are still some challenges and issues related to the performance of the medium access control (MAC) protocol of this standard that are required to be addressed. This paper comprises two main parts. In the first part, the survey has provided a thorough assessment of IEEE 802.15.4 MAC protocol performance where its functionality is evaluated considering a range of effective system parameters, that is, some of the MAC and application parameters and the impact of mutual interference. The second part of this paper is about conducting a simulation study to determine the influence of varying values of the system parameters on IEEE 802.15.4 performance gains. More specifically, we explore the dependability level of IEEE 802.5.4 performance gains on a candidate set of system parameters. Finally, this paper highlights the tangible needs to conduct more investigations on particular aspect(s) of IEEE 802.15.4 MAC protocol. Copyright (c) 2015 John Wiley & Sons, Ltd.Moravejosharieh, A.; Lloret, J. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems. 29(7):1269-1292. https://doi.org/10.1002/dac.3098S12691292297Alrajeh, N. A., Lloret, J., & Canovas, A. (2014). A Framework for Obesity Control Using a Wireless Body Sensor Network. International Journal of Distributed Sensor Networks, 10(7), 534760. doi:10.1155/2014/534760Lopes I Silva B Rodrigues J Lloret J Proenca M A mobile health monitoring solution for weight control International Conference on Wireless Communications and Signal Processing (WCSP) Nanjing / China 2011 1 5Singh, N., Singh, A. K., & Singh, V. K. (2015). Design and performance of wearable ultrawide band textile antenna for medical applications. Microwave and Optical Technology Letters, 57(7), 1553-1557. doi:10.1002/mop.29131Lan, K., Chou, C.-M., Wang, T., & Li, M.-W. (2012). Using body sensor networks for motion detection: a cluster-based approach for green radio. Transactions on Emerging Telecommunications Technologies, 25(2), 199-216. doi:10.1002/ett.2559Lloret, J., Garcia, M., Catala, A., & Rodrigues, J. J. P. C. (2016). A group-based wireless body sensors network using energy harvesting for soccer team monitoring. International Journal of Sensor Networks, 21(4), 208. doi:10.1504/ijsnet.2016.079172Garcia M Catala A Lloret J Rodrigues J A wireless sensor network for soccer team monitoring International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) Barcelona / Spain 2011 1 6Penders J Gyselinckx B Vullers R De Nil M Nimmala V van de Molengraft J Yazicioglu F Torfs T Leonov V Merken P Van Hoof C Human++: from technology to emerging health monitoring concepts 5th International Summer School and Symposium ISSS-MDBS on Medical Devices and Biosensors Hong Kong 2008 94 98Penders J Van de Molengraft J. Brown L Grundlehner B Gyselinckx B Van Hoof C Potential and challenges of body area networks for personal health Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Minneapolis, U.S. 2009 6569 6572Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., … Kwak, K. S. (2010). A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems, 36(3), 1065-1094. doi:10.1007/s10916-010-9571-3Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84-93. doi:10.1109/mcom.2009.5350373Hall, P. S., Yang Hao, Nechayev, Y. I., Alomainy, A., Constantinou, C. C., Parini, C., … Bozzetti, M. (2007). Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine, 49(3), 41-58. doi:10.1109/map.2007.4293935Mamaghanian, H., Khaled, N., Atienza, D., & Vandergheynst, P. (2011). Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Transactions on Biomedical Engineering, 58(9), 2456-2466. doi:10.1109/tbme.2011.2156795LAN-MAN Standards Committee the IEEE Computer Society IEEE standard for local and metropolitan area networks - part 15.4: low rate wireless personal area networks (LR-WPANs) 2011Petrova M Riihijarvi J Mahonen P Labella S Performance study of IEEE 802.15.4 using measurements and simulations IEEE Wireless Communications and Networking Conference (WCNC) Las Vegas, U.S. 2006 487 492Vaithiyanathan, J., Raju, R. K., & Sadayan, G. (2011). Performance Evaluation of IEEE 802.15.4 Using Association Process and Channel Measurement. Communications in Computer and Information Science, 409-417. doi:10.1007/978-3-642-22555-0_42Yazdi E Moravejosharieh A Willig A Pawlikowski K Coupling power and frequency adaptation for interference mitigation in IEEE 802.15.4-based mobile body sensor networks: part II 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 105 110Pelegris P Banitsas K Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Boston, U.S. 2011 8215 8218Ranjit, J. S., & Shin, S. (2013). A Modified IEEE 802.15.4 Superframe Structure for Guaranteed Emergency Handling in Wireless Body Area Network. Network Protocols and Algorithms, 5(2), 1. doi:10.5296/npa.v5i2.3375Jianliang Zheng, & Lee, M. J. (2004). Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard. IEEE Communications Magazine, 42(6), 140-146. doi:10.1109/mcom.2004.1304251Toscano E Lo Bello L Cross-channel interference in IEEE 802.15.4 networks IEEE International Workshop on Factory Communication Systems, 2008. WFCS 2008 Dresden, Germany 2008 139 148Bashir F Baek WS Sthapit P Pandey D young Pyun J Coordinator assisted passive discovery for mobile end devices in IEEE 802.15.4 2013 IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2013 601 604Tabatabaei Yazdi E Willig A Pawlikowski K Shortening orphan time in IEEE 802.15.4: what can be gained 2013 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., & Kwon, W. H. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA∕CA. Electronics Letters, 41(18), 1017. doi:10.1049/el:20051662Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210IEEE Computer Society LAN MAN Standards Committee Wireless LAN medium access control (MAC) and physical layer (PHY) specifications 1997Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Der Perre, L. V., Moerman, I., … Catthoor, F. (2008). Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 7(9), 3359-3371. doi:10.1109/twc.2008.060057Xinhua Ling, Yu Cheng, Mark, J. W., & Xuemin Shen. (2008). A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC. IEEE Transactions on Wireless Communications, 7(6), 2340-2349. doi:10.1109/twc.2008.070048Lee, C. Y., Cho, H. I., Hwang, G. U., Doh, Y., & Park, N. (2011). Performance modeling and analysis of IEEE 802.15.4 slotted CSMA/CA protocol with ACK mode. AEU - International Journal of Electronics and Communications, 65(2), 123-131. doi:10.1016/j.aeue.2010.02.007Wang, F., Zhao, Y., & Li, D. (2011). Analysis of CSMA/CA in IEEE 802.15.4. IET Communications, 5(15), 2187-2195. doi:10.1049/iet-com.2010.1007Zhu, J., Tao, Z., & Lv, C. (2011). Performance Evaluation of IEEE 802.15.4 CSMA/CA Scheme Adopting a Modified LIB Model. Wireless Personal Communications, 65(1), 25-51. doi:10.1007/s11277-011-0226-6Shu F Sakurai T Analysis of an energy conserving CSMA-CA GLOBECOM Washington DC, U.S. 2007 2536 2540Shu, F., & Sakurai, T. (2011). A new analytical model for the IEEE 802.15.4 CSMA-CA protocol. Computer Networks, 55(11), 2576-2591. doi:10.1016/j.comnet.2011.04.017Cano-Garcia, J. M., & Casilari, E. (2011). An empirical evaluation of the consumption of 802.15.4/ZigBee sensor motes in noisy environments. 2011 International Conference on Networking, Sensing and Control. doi:10.1109/icnsc.2011.5874886Baz, M., Mitchell, P. D., & Pearce, D. A. J. (2013). Versatile Analytical Model for Delay and Energy Evaluation in WPANs: A Case Study for IEEE 802.15.4 CSMA-CA. Wireless Personal Communications, 75(1), 415-445. doi:10.1007/s11277-013-1370-yLiu Q Czylwik A A priority-based adaptive service differentiation scheme for IEEE 802.15.4 sensor networks Proceedings of European Wireless 2014; 20th European Wireless Conference Barcelona, Spain 2014 1 6Golmie, N., Cypher, D., & Rebala, O. (s. f.). Performance evaluation of low rate WPANs for medical applications. IEEE MILCOM 2004. Military Communications Conference, 2004. doi:10.1109/milcom.2004.1494952Misic, J., Misic, V. B., & Shafi, S. (s. f.). Performance of IEEE 802.15.4 beacon enabled PAN with uplink transmissions in non-saturation mode - access delay for finite buffers. First International Conference on Broadband Networks. doi:10.1109/broadnets.2004.61Mišić, J., Shafi, S., & Mišić, V. B. (2005). The impact of MAC parameters on the performance of 802.15.4 PAN. Ad Hoc Networks, 3(5), 509-528. doi:10.1016/j.adhoc.2004.08.002Anastasi, G., Conti, M., & Di Francesco, M. (2011). A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 7(1), 52-65. doi:10.1109/tii.2010.2085440Lee, B.-H., Al Rasyid, M. U. H., & Wu, H.-K. (2012). Analysis of superframe adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks. EURASIP Journal on Wireless Communications and Networking, 2012(1). doi:10.1186/1687-1499-2012-219Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). pTunes. Proceedings of the 11th international conference on Information Processing in Sensor Networks - IPSN ’12. doi:10.1145/2185677.2185730Rohm, D., Goyal, M., Hosseini, H., Divjak, A., & Bashir, Y. (2009). Configuring Beaconless IEEE 802.15.4 Networks Under Different Traffic Loads. 2009 International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2009.84Jin-Shyan Lee. (2006). Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Transactions on Consumer Electronics, 52(3), 742-749. doi:10.1109/tce.2006.1706465De Paz Alberola, R., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 10(4), 664-679. doi:10.1016/j.adhoc.2011.06.006Barbieri, A., Chiti, F., & Fantacci, R. (2006). WSN17-2: Proposal of an Adaptive MAC Protocol for Efficient IEEE 802.15.4 Low Power Communications. IEEE Globecom 2006. doi:10.1109/glocom.2006.989Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks. 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring. doi:10.1109/vetecs.2007.35Kang, M., Chong, J., Hyun, H., Kim, S., Jung, B., & Sung, D. (2007). Adaptive Interference-Aware Multi-Channel Clustering Algorithm in a ZigBee Network in the Presence of WLAN Interference. 2007 2nd International Symposium on Wireless Pervasive Computing. doi:10.1109/iswpc.2007.342601Yi, P., Iwayemi, A., & Zhou, C. (2011). Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications. IEEE Transactions on Smart Grid, 2(1), 110-120. doi:10.1109/tsg.2010.2091655Tang, L., Wang, K.-C., Huang, Y., & Gu, F. (2007). Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Transactions on Industrial Informatics, 3(2), 99-110. doi:10.1109/tii.2007.898414Sha M Xing G Zhou G Liu S Wang X C-MAC: model-driven concurrent medium access control for wireless sensor networks IEEE INFOCOM 2009 Rio de Janeiro, Brazil 2009 1845 1853 10.1109/INFCOM.2009.5062105Peizhong Yi, Iwayemi, A., & Chi Zhou. (2010). Frequency agility in a ZigBee network for smart grid application. 2010 Innovative Smart Grid Technologies (ISGT). doi:10.1109/isgt.2010.5434747Torabi N Wong W Leung VCM A robust coexistence scheme for IEEE 802.15.4 wireless personal area networks IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2011 1031 1035 10.1109/CCNC.2011.5766322IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks IEEE Std 802.15.6-2012 2012 1 271 10.1109/IEEESTD.2012.6161600Kim, S., Kim, S., Kim, J.-W., & Eom, D.-S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). doi:10.1109/secon.2012.6275772Bradai N Fourati LC Kamoun L Performance analysis of medium access control protocol for wireless body area networks 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA) Barcelona, Spain 2013 916 921Moravejosharieh A Yazdi ET Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: the need for enhancement IEEE 16th International Conference on Computational Science and Engineering (CSE) Sydney, Australia 2013 1226 1231Moravejosharieh A Yazdi ET Willig A Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: greedy channel utilization 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Moravejosharieh A Yazdi E Willig A Pawlikowski K Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: continuous hopping approach Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 93 98 10.1109/ATNAC.2014.7020880Moravejosharieh, A. H. (2015). Frequency-Adaptive Approach In IEEE 802.15.4 Wireless Body Sensor Networks: Continuous-Assessment or Periodic-Assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19. doi:10.17972/ajicta2015113Moravejosharieh A Yazdi E Pawlikowski K Sirisena H Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: adaptive phase-shifting approach International Telecommunication Networks and Applications Conference (ITNAC) Sydney, Australia 2015 93 98Bian, K., Park, J.-M., & Gao, B. (2014). Channel Assignment for Multi-hop Cognitive Radio Networks. Cognitive Radio Networks, 101-116. doi:10.1007/978-3-319-07329-3_6Bian, K., Park, J.-M., & Gao, B. (2014). Coexistence-Aware Spectrum Sharing for Homogeneous Cognitive Radio Networks. Cognitive Radio Networks, 61-75. doi:10.1007/978-3-319-07329-3_4Wu C Yan H Huo H A multi-channel MAC protocol design based on IEEE 802.15.4 standard in industry 2012 10th IEEE International Conference on Industrial Informatics (INDIN) Beijing, China 2012 1206 1211 10.1109/INDIN.2012.6300916Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081-3099. doi:10.1016/j.comnet.2011.05.020Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th International Conference on Information Processing in Sensor Networks IPSN '08 St. Louis MO, U.S. 2008 53 63Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115-121. doi:10.1109/mcom.2006.1632658Wykret T Correia L Macedo D Giacomin J Andrade L Evaluation and avoidance of interference in WSN: a multi-radio node prototype using dynamic spectrum allocation IFIP Wireless Days (WD) Valencia, Spain 2013 1 3 10.1109/WD.2013.6686533Doyle L Sutton P Nolan K Lotze J Ozgul B Rondeau T Fahmy S Lahlou H DaSilva L Experiences from the IRIS testbed in dynamic spectrum access and cognitive radio experimentation IEEE Symposium on New Frontiers in Dynamic Spectrum Singapore 2010 1 8 10.1109/DYSPAN.2010.5457835Ansari, J., Zhang, X., & Mahonen, P. (2010). Multi-radio medium access control protocol for wireless sensor networks. International Journal of Sensor Networks, 8(1), 47. doi:10.1504/ijsnet.2010.034066Liu Z Wu W A dynamic multi-radio multi-channel MAC protocol for wireless sensor networks 2nd International Conference on Communication Software and Networks (ICCSN) Singapore 2010 105 109Xu, W., Trappe, W., & Zhang, Y. (2008). Defending wireless sensor networks from radio interference through channel adaptation. ACM Transactions on Sensor Networks, 4(4), 1-34. doi:10.1145/1387663.1387664Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th IEEE Computer Society International Conference on Information Processing in Sensor Networks IPSN '08 Washington, DC, USA 2008 53 63Tae Hyun Kim, Jae Yeol Ha, & Sunghyun Choi. (2009). Improving Spectral and Temporal Efficiency of Collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596-1609. doi:10.1109/tmc.2009.85Chowdhury, K. R., Nandiraju, N., Chanda, P., Agrawal, D. P., & Zeng, Q.-A. (2009). Channel allocation and medium access control for wireless sensor networks. Ad Hoc Networks, 7(2), 307-321. doi:10.1016/j.adhoc.2008.03.004Deylami, M., & Jovanov, E. (2012). A distributed and collaborative scheme for mitigating coexistence in IEEE 802.15.4 based WBANs. Proceedings of the 50th Annual Southeast Regional Conference on - ACM-SE ’12. doi:10.1145/2184512.2184514Deylami, M. N., & Jovanov, E. (2014). A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs. IEEE Journal of Biomedical and Health Informatics, 18(1), 327-334. doi:10.1109/jbhi.2013.2278217Deylami M Jovanov E An implementation of a distributed scheme for managing the dynamic coexistence of wireless body area networks Southeastcon, 2013 Proceedings of IEEE Jacksonville, U.S. 2013 1 6 10.1109/SECON.2013.6567446Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635-1657. doi:10.1109/surv.2014.012214.00007Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2010). Body Area Networks: A Survey. Mobile Networks and Applications, 16(2), 171-193. doi:10.1007/s11036-010-0260-8Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80-88. doi:10.1109/mwc.2010.5416354ULLAH, S., KHAN, P., ULLAH, N., SALEEM, S., HIGGINS, H., & Sup KWAK, K. (2009). A Review of Wireless Body Area Networks for Medical Applications. International Journal of Communications, Network and System Sciences, 02(08), 797-803. doi:10.4236/ijcns.2009.28093Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: the MAC. IEEE Communications Magazine, 50(5), 100-106. doi:10.1109/mcom.2012.6194389Pantelopoulos A Bourbakis N A survey on wearable biosensor systems for health monitoring 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Canada 2008 4887 4890 10.1109/IEMBS.2008.4650309Takei, K., Honda, W., Harada, S., Arie, T., & Akita, S. (2014). Toward Flexible and Wearable Human-Interactive Health-Monitoring Devices. Advanced Healthcare Materials, 4(4), 487-500. doi:10.1002/adhm.201400546Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2013). Intra-Mobility Support Solutions for Healthcare Wireless Sensor Networks–Handover Issues. IEEE Sensors Journal, 13(11), 4339-4348. doi:10.1109/jsen.2013.2267729Carrano, R. C., Passos, D., Magalhaes, L. C. S., & Albuquerque, C. V. N. (2014). Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(1), 181-194. doi:10.1109/surv.2013.052213.00116Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094Khanafer, M., Guennoun, M., & Mouftah, H. T. (2014). A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(2), 856-876. doi:10.1

    Cellular and Wi-Fi technologies evolution: from complementarity to competition

    Get PDF
    This PhD thesis has the characteristic to span over a long time because while working on it, I was working as a research engineer at CTTC with highly demanding development duties. This has delayed the deposit more than I would have liked. On the other hand, this has given me the privilege of witnessing and studying how wireless technologies have been evolving over a decade from 4G to 5G and beyond. When I started my PhD thesis, IEEE and 3GPP were defining the two main wireless technologies at the time, Wi-Fi and LTE, for covering two substantially complementary market targets. Wi-Fi was designed to operate mostly indoor, in unlicensed spectrum, and was aimed to be a simple and cheap technology. Its primary technology for coexistence was based on the assumption that the spectrum on which it was operating was for free, and so it was designed with interference avoidance through the famous CSMA/CA protocol. On the other hand, 3GPP was designing technologies for licensed spectrum, a costly kind of spectrum. As a result, LTE was designed to take the best advantage of it while providing the best QoE in mainly outdoor scenarios. The PhD thesis starts in this context and evolves with these two technologies. In the first chapters, the thesis studies radio resource management solutions for standalone operation of Wi-Fi in unlicensed and LTE in licensed spectrum. We anticipated the now fundamental machine learning trend by working on machine learning-based radio resource management solutions to improve LTE and Wi-Fi operation in their respective spectrum. We pay particular attention to small cell deployments aimed at improving the spectrum efficiency in licensed spectrum, reproducing small range scenarios typical of Wi-Fi settings. IEEE and 3GPP followed evolving the technologies over the years: Wi-Fi has grown into a much more complex and sophisticated technology, incorporating the key features of cellular technologies, like HARQ, OFDMA, MU-MIMO, MAC scheduling and spatial reuse. On the other hand, since Release 13, cellular networks have also been designed for unlicensed spectrum. As a result, the two last chapters of this thesis focus on coexistence scenarios, in which LTE needs to be designed to coexist with Wi-Fi fairly, and NR, the radio access for 5G, with Wi-Fi in 5 GHz and WiGig in 60 GHz. Unlike LTE, which was adapted to operate in unlicensed spectrum, NR-U is natively designed with this feature, including its capability to operate in unlicensed in a complete standalone fashion, a fundamental new milestone for cellular. In this context, our focus of analysis changes. We consider that these two technological families are no longer targeting complementarity but are now competing, and we claim that this will be the trend for the years to come. To enable the research in these multi-RAT scenarios, another fundamental result of this PhD thesis, besides the scientific contributions, is the release of high fidelity models for LTE and NR and their coexistence with Wi-Fi and WiGig to the ns-3 open-source community. ns-3 is a popular open-source network simulator, with the characteristic to be multi-RAT and so naturally allows the evaluation of coexistence scenarios between different technologies. These models, for which I led the development, are by academic citations, the most used open-source simulation models for LTE and NR and havereceived fundings from industry (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) and federal agencies (NIST, LLNL) over the years.Aquesta tesi doctoral té la característica d’allargar-se durant un llarg període de temps ja que mentre treballava en ella, treballava com a enginyera investigadora a CTTC amb tasques de desenvolupament molt exigents. Això ha endarrerit el dipositar-la més del que m’hagués agradat. D’altra banda, això m’ha donat el privilegi de ser testimoni i estudiar com han evolucionat les tecnologies sense fils durant més d’una dècada des del 4G fins al 5G i més enllà. Quan vaig començar la tesi doctoral, IEEE i 3GPP estaven definint les dues tecnologies sense fils principals en aquell moment, Wi-Fi i LTE, que cobreixen dos objectius de mercat substancialment complementaris. Wi-Fi va ser dissenyat per funcionar principalment en interiors, en espectre sense llicència, i pretenia ser una tecnologia senzilla i barata. La seva tecnologia primària per a la convivència es basava en el supòsit que l’espectre en el que estava operant era de franc, i, per tant, es va dissenyar simplement evitant interferències a través del famós protocol CSMA/CA. D’altra banda, 3GPP estava dissenyant tecnologies per a espectres amb llicència, un tipus d’espectre costós. Com a resultat, LTE està dissenyat per treure’n el màxim profit alhora que proporciona el millor QoE en escenaris principalment a l’aire lliure. La tesi doctoral comença amb aquest context i evoluciona amb aquestes dues tecnologies. En els primers capítols, estudiem solucions de gestió de recursos de radio per a operacions en espectre de Wi-Fi sense llicència i LTE amb llicència. Hem anticipat l’actual tendència fonamental d’aprenentatge automàtic treballant solucions de gestió de recursos de radio basades en l’aprenentatge automàtic per millorar l’LTE i Wi-Fi en el seu espectre respectiu. Prestem especial atenció als desplegaments de cèl·lules petites destinades a millorar la eficiència d’espectre llicenciat, reproduint escenaris de petit abast típics de la configuració Wi-Fi. IEEE i 3GPP van seguir evolucionant les tecnologies al llarg dels anys: El Wi-Fi s’ha convertit en una tecnologia molt més complexa i sofisticada, incorporant les característiques clau de les tecnologies cel·lulars, com ara HARQ i la reutilització espacial. D’altra banda, des de la versió 13, també s’han dissenyat xarxes cel·lulars per a espectre sense llicència. Com a resultat, els dos darrers capítols d’aquesta tesi es centren en aquests escenaris de convivència, on s’ha de dissenyar LTE per conviure amb la Wi-Fi de manera justa, i NR, l’accés a la radio per a 5G amb Wi-Fi a 5 GHz i WiGig a 60 GHz. A diferència de LTE, que es va adaptar per funcionar en espectre sense llicència, NR-U està dissenyat de forma nativa amb aquesta característica, inclosa la seva capacitat per operar sense llicència de forma autònoma completa, una nova fita fonamental per al mòbil. En aquest context, el nostre focus d’anàlisi canvia. Considerem que aquestes dues famílies de tecnologia ja no estan orientades cap a la complementarietat, sinó que ara competeixen, i afirmem que aquesta serà el tendència per als propers anys. Per permetre la investigació en aquests escenaris multi-RAT, un altre resultat fonamental d’aquesta tesi doctoral, a més de les aportacions científiques, és l’alliberament de models d’alta fidelitat per a LTE i NR i la seva coexistència amb Wi-Fi a la comunitat de codi obert ns-3. ns-3 és un popular simulador de xarxa de codi obert, amb la característica de ser multi-RAT i, per tant, permet l’avaluació de manera natural d’escenaris de convivència entre diferents tecnologies. Aquests models, pels quals he liderat el desenvolupament, són per cites acadèmiques, els models de simulació de codi obert més utilitzats per a LTE i NR i que han rebut finançament de la indústria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) i agències federals (NIST, LLNL) al llarg dels anys.Esta tesis doctoral tiene la característica de extenderse durante mucho tiempo porque mientras trabajaba en ella, trabajaba como ingeniera de investigación en CTTC con tareas de desarrollo muy exigentes. Esto ha retrasado el depósito más de lo que me hubiera gustado. Por otro lado, gracias a ello, he tenido el privilegio de presenciar y estudiar como las tecnologías inalámbricas han evolucionado durante una década, de 4G a 5G y más allá. Cuando comencé mi tesis doctoral, IEEE y 3GPP estaban definiendo las dos principales tecnologías inalámbricas en ese momento, Wi-Fi y LTE, cumpliendo dos objetivos de mercado sustancialmente complementarios. Wi-Fi fue diseñado para funcionar principalmente en interiores, en un espectro sin licencia, y estaba destinado a ser una tecnología simple y barata. Su tecnología primaria para la convivencia se basaba en el supuesto en que el espectro en el que estaba operando era gratis, y así fue diseñado simplemente evitando interferencias a través del famoso protocolo CSMA/CA. Por otro lado, 3GPP estaba diseñando tecnologías para espectro con licencia, un tipo de espectro costoso. Como resultado, LTE está diseñado para aprovechar el espectro al máximo proporcionando al mismo tiempo el mejor QoE en escenarios principalmente al aire libre. La tesis doctoral parte de este contexto y evoluciona con estas dos tecnologías. En los primeros capítulos, estudiamos las soluciones de gestión de recursos de radio para operación en espectro Wi-Fi sin licencia y LTE con licencia. Anticipamos la tendencia ahora fundamental de aprendizaje automático trabajando en soluciones de gestión de recursos de radio para mejorar LTE y funcionamiento deWi-Fi en su respectivo espectro. Prestamos especial atención a las implementaciones de células pequeñas destinadas a mejorar la eficiencia de espectro licenciado, reproduciendo los típicos escenarios de rango pequeño de la configuración Wi-Fi. IEEE y 3GPP siguieron evolucionando las tecnologías a lo largo de los años: Wi-Fi se ha convertido en una tecnología mucho más compleja y sofisticada, incorporando las características clave de las tecnologías celulares, como HARQ, OFDMA, MU-MIMO, MAC scheduling y la reutilización espacial. Por otro lado, desde la Release 13, también se han diseñado redes celulares para espectro sin licencia. Como resultado, los dos últimos capítulos de esta tesis se centran en estos escenarios de convivencia, donde LTE debe diseñarse para coexistir con Wi-Fi de manera justa, y NR, el acceso por radio para 5G con Wi-Fi en 5 GHz y WiGig en 60 GHz. A diferencia de LTE, que se adaptó para operar en espectro sin licencia, NR-U está diseñado de forma nativa con esta función, incluyendo su capacidad para operar sin licencia de forma completamente independiente, un nuevo hito fundamental para los celulares. En este contexto, cambia nuestro enfoque de análisis. Consideramos que estas dos familias tecnológicas ya no tienen como objetivo la complementariedad, sino que ahora están compitiendo, y afirmamos que esta será la tendencia para los próximos años. Para permitir la investigación en estos escenarios de múltiples RAT, otro resultado fundamental de esta tesis doctoral, además de los aportes científicos, es el lanzamiento de modelos de alta fidelidad para LTE y NR y su coexistencia con Wi-Fi y WiGig a la comunidad de código abierto de ns-3. ns-3 es un simulador popular de red de código abierto, con la característica de ser multi-RAT y así, naturalmente, permite la evaluación de escenarios de convivencia entre diferentes tecnologías. Estos modelos, para los cuales lideré el desarrollo, son por citas académicas, los modelos de simulación de código abierto más utilizados para LTE y NR y han recibido fondos de la industria (Ubiquisys, WFA, SpiderCloud, Interdigital, Facebook) y agencias federales (NIST, LLNL) a lo largo de los años.Postprint (published version

    Using AQM to improve TCP performance over wireless networks

    Get PDF
    TCP flow control algorithms have been designed for wireline networks where congestion is measured by packet loss due to buffer overflow. However, wireless networks also suffer from significant packet losses due to bit errors and handoffs. TCP responds to all the packet losses by invoking congestion control and avoidance algorithms and this results in degraded end-to-end performance in wireless networks. In this paper, we describe an Wireless Random Exponential Marking(WREM) scheme which effectively improves TCP performance over wireless networks by decoupling loss recovery from congestion control. Moreover, WREM is capable of handling the coexistence of both ECN-Capable and Non-ECN-Capable routers. We present simulation results to show its effectiveness and compatibility

    Analysis of Co-Channel Coexistence Mitigation Methods Applied to IEEE 802.11p and 5G NR-V2X Sidelink

    Get PDF
    Direct communication between vehicles and surrounding objects, called vehicle-to-everything (V2X), is ready for the market and promises to raise the level of safety and comfort while driving. To this aim, specific bands have been reserved in some countries worldwide and different wireless technologies have been developed; however, these are not interoperable. Recently, the issue of co-channel coexistence has been raised, leading the European Telecommunications Standards Institute (ETSI) to propose a number of solutions, called mitigation methods, for the coexistence of the IEEE 802.11p based ITS-G5 and the 3GPP fourth generation (4G) long term evolution (LTE)-V2X sidelink. In this work, several of the envisioned alternatives are investigated when adapted to the coexistence of the IEEE 802.11p with its enhancement IEEE 802.11bd and the latest 3GPP standards, i.e., the fifth generation (5G) new radio (NR)-V2X. The results, obtained through an open-source simulator that is shared with the research community for the evaluation of additional proposals, show that the methods called A and C, which require modifications to the standards, improve the transmission range of one or both systems without affecting the other, at least in low-density scenarios
    • …
    corecore