11,000 research outputs found

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    FSEA 2014 – Proceedings of the AVI 2014 Workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces

    Get PDF
    It is with great pleasure that we welcome you to FSEA 2014, the AVI 2014 workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces. This workshop focuses on advanced interaction, interface, and visualization techniques for energy-related applications, tools, and services. It brings together researchers and practitioners from a diverse range of background, including interaction design, human-computer interaction, visualization, computer games, and other fields concerned with the development of advanced visual interfaces for smart energy applications. FSEA 2014 is the result of the efforts of many people involved in its organization, including our programme committee, and others who have assisted us in putting this workshop together

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Human experience in the natural and built environment : implications for research policy and practice

    Get PDF
    22nd IAPS conference. Edited book of abstracts. 427 pp. University of Strathclyde, Sheffield and West of Scotland Publication. ISBN: 978-0-94-764988-3

    Aeronautical Engineering. A continuing bibliography with indexes, supplement 156

    Get PDF
    This bibliography lists 288 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1982

    Active PinScreen: Exploring Spatio-Temporal Tactile Feedbackfor Multi-Finger Interaction

    Get PDF
    Multiple fingers are often used for efficient interaction with handheld computing devices. Currently, any tactile feedback provided is felt on the finger pad or the palm with coarse granularity. In contrast, we present a new tactile feedback technique, Active PinScreen, that applies localised stimuli on multiple fingers with fine spatial and temporal resolution. The tactile screen uses an array of solenoid-actuated magnetic pins with millimetre scale form-factor which could be deployed for back-of-device handheld use without instrumenting the user. As well as presenting a detailed description of the prototype, we provide the potential design configurations and the applications of the Active PinScreen and evaluate the human factors of tactile interaction with multiple fingers in a controlled user evaluation. The results of our study show a high recognition rate for directional and patterned stimulation across different grip orientations as well as within- and between- fingers. We end the paper with a discussion of our main findings, limitations in the current design and directions for future work

    Real-time integration of IEQ with BIM - user centered approach

    Get PDF
    Altering indoor environment to increase occupants comfort may increase their productivity and reduce waste in time, energy and resources. This work attempts to understand occupants behavior and comfort to build a platform that visualizes user-centered parameters related to indoor environment in real-time using IoT. User-centered prototype platform was designed, built and tested. Gamification concepts was applied to increase participation. The results were visualized and spatially mapped to the 3D model. This platform may help users build better perception about their indoor environment,i.e in offices, schools, hotels and hospitals, using interactive content and games. Also, it may help decision makers to take faster and better decisions, relying on the abundance of user-centered data, which may help in quality improvement. A test with around 20 users was made to assess indoor and learning environments. Many have found the system useful and easy to use on their mobile devices. Users shared valuable feedbacks and ideas for further developments. The first experiment gave important insights for possible future tests

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come
    • 

    corecore