606 research outputs found

    Performance Evaluation of Mobility Models over UDP Traffic Pattern for MANET Using NS-2

    Get PDF
                                                                                                                      تعرض الدراسة الحالية دراسة وتقييم نماذج محاكاة شبكة الـ MANET على نمط حركة UDP لتحديد تأثيرات نمط الحركة هذا على نماذج التنقل في MANET والتي يتم تنفيذها في محاكي الشبكة NS-2.35 وفقًا لمقاييس الأداء المختلفة (الإنتاجية، نسبة الحزم المنقولة من المصدر الى الهدف  (PDF)، تحميل التوجيه الطبيعي (NRL) و زمن التأخير من نهاية إلى نهاية (AED)) مع مختلف المعلمات مثل السرعات المختلفة، ومناطق بيئة مختلفة، وعدد مختلف من العقد، ومعدلات مرور مختلفة، ومصادر مختلفة للحركة، اختلاف وقت التوقف وأوقات محاكاة مختلفة. نستخدم بروتوكول التوجيه AODV ونموذج نقطة الطريق العشوائية (RWP)، نموذج مجموعة نقاط المرجعي (RPGM)، نموذج غاوس ماركوف (GMM) ونموذج شبكة مانهاتن (MGM) ونماذج التنقل مع نمط الحركة CBR. تُظهر نتائج المحاكاة أن أداء بروتوكول التوجيه مع نموذج نقطة مجموعة المراجع RPGM هو الأفضل مقارنةً بنماذج التحرك الأخرى.  The current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes,  different traffic rates, different traffic sources, different pause times and different simulation times .  A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Reference Point Group Model) and MGM (Manhattan Grid Model) mobility models above CBR traffic sources. The results of Reference Point Group Model simulation illuminate that routing protocol performance is best with RPG mobility model than other models

    Simulation based comparison of routing protocols in wireless multihop adhoc networks

    Get PDF
    Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyzed in the presence of varying the number of mobile nodes, pause time, and traffic connection numbers. Moreover, Routing and QoS performance metrics such as normalized routing load, routing packet, packet delivery ratio, packet drop, end-to-end delay, and throughput are measured to conduct a performance comparison between three routing protocols. Simulation results indicate that AODV outperforms the DSDV and AOMDV protocols in most of the metrics. AOMDV is better than DSDV in terms of end-to-end delay. DSDV provides lower throughput performance results. Network topology parameters have a slight impact on AODV Performance

    On the performance of probabilistic flooding in wireless mobile ad hoc networks

    Get PDF
    Broadcasting in MANET’s has traditionally been based on flooding, but this can induce broadcast storms that severely degrade network performance due to redundant retransmission, collision and contention. Probabilistic flooding, where a node rebroadcasts a newly arrived one-to-all packet with some probability, p, was an early suggestion to reduce the broadcast storm problem. The first part of this thesis investigates the effects on the performance of probabilistic flooding of a number of important MANET parameters, including node speed, traffic load and node density. It transpires that these parameters have a critical impact both on reachability and on the number of so-called “saved rebroadcast packets” achieved. For instance, across a range of rebroadcast probability values, as network density increases from 25 to 100 nodes, reachability achieved by probabilistic flooding increases from 85% to 100%. Moreover, as node speed increases from 2 to 20 m/sec, reachability increases from 90% to 100%. The second part of this thesis proposes two new probabilistic algorithms that dynamically adjust the rebroadcasting probability contingent on node distribution using only one-hop neighbourhood information, without requiring any assistance of distance measurements or location-determination devices. The performance of the new algorithm is assessed and compared to blind flooding as well as the fixed probabilistic approach. It is demonstrated that the new algorithms have superior performance characteristics in terms of both reachability and saved rebroadcasts. For instance, the suggested algorithms can improve saved rebroadcasts by up to 70% and 47% compared to blind and fixed probabilistic flooding, respectively, even under conditions of high node mobility and high network density without degrading reachability. The final part of the thesis assesses the impact of probabilistic flooding on the performance of routing protocols in MANETs. Our performance results indicate that using our new probabilistic flooding algorithms during route discovery enables AODV to achieve a higher delivery ratio of data packets while keeping a lower routing overhead compared to using blind and fixed probabilistic flooding. For instance, the packet delivery ratio using our algorithm is improved by up to 19% and 12% compared to using blind and fixed probabilistic flooding, respectively. This performance advantage is achieved with a routing overhead that is lower by up to 28% and 19% than in fixed probabilistic and blind flooding, respectively

    Performance evaluation of flooding in MANETs in the presence of multi-broadcast traffic

    Get PDF
    Broadcasting has many important uses and several mobile ad hoc networks (MANETs) protocols assume the availability of an underlying broadcast service. Applications, which make use of broadcasting, include LAN emulation, paging a particular node. However, broadcasting induces what is known as the "broadcast storm problem" which causes severe degradation in network performance, due to excessive redundant retransmission, collision, and contention. Although probabilistic flooding has been one of the earliest suggested approaches to broadcasting. There has not been so far any attempt to analyse its performance behaviour in MANETs. This paper investigates using extensive ns-2 simulations the effects of a number of important parameters in a MANET, including node speed, pause time and, traffic load, on the performance of probabilistic flooding. The results reveal that while these parameters have a critical impact on the reachability achieved by probabilistic flooding, they have relatively a lower effect on the number of saved rebroadcast packets

    An Analysis Framework for Mobility Metrics in Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have inherently dynamic topologies. Under these difficult circumstances, it is essential to have some dependable way of determining the reliability of communication paths. Mobility metrics are well suited to this purpose. Several mobility metrics have been proposed in the literature, including link persistence, link duration, link availability, link residual time, and their path equivalents. However, no method has been provided for their exact calculation. Instead, only statistical approximations have been given. In this paper, exact expressions are derived for each of the aforementioned metrics, applicable to both links and paths. We further show relationships between the different metrics, where they exist. Such exact expressions constitute precise mathematical relationships between network connectivity and node mobility. These expressions can, therefore, be employed in a number of ways to improve performance of MANETs such as in the development of efficient algorithms for routing, in route caching, proactive routing, and clustering schemes

    Performance Analysis of Mobile Ad Hoc Network Routing Protocols Using ns-3 Simulations

    Get PDF
    Mobile ad hoc networks (MANETs) consist of mobile nodes that can communicate with each other through wireless links without reliance on any infrastructure. The dynamic topology of MANETs poses a significant challenge for the design of routing protocols. Many routing protocols have been developed to discover routes in MANETs through various mechanisms such as source, distance vector, and link state routing. In this thesis, we present a comprehensive performance comparison of several prominent MANET routing protocols. The protocols studied are Destination-Sequenced Distance-Vector (DSDV), Optimized Link State Routing (OLSR), Ad Hoc On-Demand Distance Vector protocol (AODV), and Dynamic Source Routing (DSR). We consider a range of network dynamicity and node density, model three mobility models: Steady-State Random Waypoint (SS-RWP), Gauss-Markov (G-M), and Lévy Walk, and use ns-3 to evaluate their performance on metrics such as packet delivery ratio, end-to-end delay, and routing overhead. We believe this study will be helpful for the understanding of mobile routing dynamics, the improvement of current MANET routing protocols, and the development of new protocols

    Voice Traffic over Mobile Ad Hoc Networks: A Performance Analysis of the Optimized Link State Routing Protocol

    Get PDF
    This thesis investigates the performance of the Optimized Link State Routing (OLSR) protocol on Voice over Internet Protocol (VoIP) applications in Mobile Ad hoc Networks (MANETs). Using VoIP over MANETs takes advantage of the mobility and versatility of a MANET environment and the flexibility and interoperability a digital voice format affords. Research shows that VoIP-like traffic can be routed through an ad hoc network using the Ad hoc On-demand Distance Vector routing protocol. This research determines the suitability of OLSR as a routing protocol for MANETs running VoIP applications. Representative VoIP traffic is submitted to a MANET and end-to-end delay and packet loss are observed. Node density, number of data streams and mobility are varied creating a full-factorial experimental design with 18 distinct scenarios. The MANET is simulated in OPNET and VoIP traffic is introduced using one source node to send traffic to random destinations throughout the network. Simulation results indicate delay is between 0.069 ms to 0.717 ms, which is significantly lower than the recommended 150 ms threshold for VoIP applications. Packet loss is between 0.32% and 9.97%, which is less than the 10% allowable packet loss for acceptable VoIP quality. Thus OLSR is a suitable routing protocol for MANETs running VoIP applications

    Fairness Comparison of TCP Variants over Proactive and Reactive Routing Protocol in MANET

    Get PDF
    Mobile ad hoc networks (MANETs) are applicable in an infrastructureless environment where the mobile devices act as routers and intermediate nodes are used to transfer segments to their final destination. As Transmission control protocol (TCP) was originated for Internet with fundamentally different properties, faces serious challenges when used in mobile ad hoc networks. TCP functionality degrades, due to special properties of MANET such as route failure because of significant change of network topology and link errors. TCP uses Congestion Control Algorithms; TCP Vegas is one of them which claim to have better throughput comparing with other TCP variants in a wired network. Fairness issues of TCP Variants in MANET including existing routing protocol are still unsolved. To determine the best TCP Variants in MANET environment over renowned routing protocol is the main objective of this paper. A Study on the throughput fairness of TCP Variants namely, Vegas, Reno, New Reno, SACK, FACK, and Cubic are performed via simulation experiment using network simulator (ns-2) over existing routing protocol, named, AODV, AOMDV, DSDV, and DSR. This fairness evaluation of TCP flows arranged a contrast medium for the TCP Variants using stated routing protocol in MANET. However, TCP Vegas obtain unfair throughput in MANET. The simulation results show that TCP Reno outperforms other TCP variants under DSDV routing protocol

    Hybrid probabilistic broadcast schemes for mobile ad hoc networks

    Get PDF
    Broadcasting is one of the fundamental data dissemination mechanisms in mobile ad hoc network (MANET), which is, for instance, extensively used in many routing protocols for route discovery process. The dynamic topology and limited communication bandwidth of such networks pose a number of challenges in designing an efficient broadcasting scheme for MANETs. The simplest approach is flooding, where each node retransmit every unique received packet exactly once on each outgoing link. Although flooding ensures that broadcast packet is received by all network nodes, it generates many redundant transmissions which can trigger high transmission collision and contention in the network, a phenomenon referred to as the broadcast storm. Several probabilistic broadcast algorithms have been proposed that incur low communication overhead to mitigate the broadcast storm problem and tend to show superior adaptability in changing environments when compared to deterministic (i.e., non-probabilistic) schemes. However, most of these schemes reduce redundant broadcasts at the expense of reachability, a requirement for near-global network topological information or support from additional hardware. This research argues that broadcast schemes that combine the important features of fixed probabilistic and counter-based schemes can reduce the broadcast storm problem without sacrificing reachability while still achieving better end-to-end delay. To this end, the first part of this research investigate the effects of forwarding probabilities and counter threshold values on the performance of fixed probabilistic and counter-based schemes. The findings of this investigation are exploited to suggest a new hybrid approach, the Probabilistic Counter-Based Scheme (PCBS) that uses the number of duplicate packets received to estimate neighbourhood density and assign a forwarding probability value to restrict the generation of so many redundant broadcast packets. The simulation results reveal that under various network conditions PCBS reduces the number of redundant transmissions, collision rate and end-to-end delay significantly without sacrificing reachability when compared against counter-based, fixed probabilistic and flood broadcasting. Often in MANETs, there are regions of different node density due to node mobility. As such, PCBS can suffer from a degree of inflexibility in terms of rebroadcast probability, since each node is assigned the same forwarding probability regardless of its local neighbourhood conditions. To address this shortcoming, the second part of this dissertation proposes an Adjusted Probabilistic Counter-Based Scheme (APCBS) that dynamically assigns the forwarding probability to a node based on its local node density using a mathematical function. Thus, a node located in a sparse region of the network is assigned a high forwarding probability while a node located in denser region is assigned a relatively lower forwarding probability. These combined effects enhance end-to-end delay, collision rate and reachability compared to PCBS variant. The performance of most broadcasting schemes that have been suggested for MANETs including those presented here, have been analysed in the context of “pure” broadcast scenarios with relatively little investigation towards their performance impact on specific applications such as route discovery process. The final part of this thesis evaluates the performance of the well-known AODV routing protocol when augmented with APCBS route discovery. Results indicate that the resulting route discovery approach reduces the routing overhead, collision rate and end-to-end delay without degrading the overall network throughput compared to the existing approaches based on flooding, counterbased and fixed probabilistic route discovery
    corecore