171 research outputs found

    Data collection procedures for the Software Engineering Laboratory (SEL) database

    Get PDF
    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms

    The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    Get PDF
    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage

    Calibration and Validation of the COCOMO II.1997.0 Cost/Schedule Estimating Model to the Space and Missile Systems Center Database

    Get PDF
    The goal of this study was to determine the accuracy of COCOMO II.1997.0, a software cost and schedule estimating model, using Magnitude of Relative Error, Mean Magnitude of Relative Error, Relative Root Mean Square, and a 25 percent Prediction Level. Effort estimates were completed using the model in default and in calibrated mode. Calibration was accomplished by dividing four stratified data sets into two random validation and calibration data sets using five times resampling. The accuracy results were poor; the best having an accuracy of only .3332 within 40 percent of the time in calibrated mode. It was found that homogeneous data is the key to producing the best results, and the model typically underestimates. The second part of this thesis was to try and improve upon the default mode estimates. This was accomplished by regressing the model estimates to the actual effort. Each original regression equation was transformed and tested for normality, equal variance, and significance. Overall, the results were promising; regression improved the accuracy in three of the four cases, the best having an accuracy of .2059 within 75 percent of the time

    Collected software engineering papers, volume 6

    Get PDF
    A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies

    Software Engineering Laboratory Series: Collected Software Engineering Papers

    Get PDF
    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document

    Change decision support:extraction and analysis of late architecture changes using change characterization and software metrics

    Get PDF
    Software maintenance is one of the most crucial aspects of software development. Software engineering researchers must develop practical solutions to handle the challenges presented in maintaining mature software systems. Research that addresses practical means of mitigating the risks involved when changing software, reducing the complexity of mature software systems, and eliminating the introduction of preventable bugs is paramount to today’s software engineering discipline. Giving software developers the information that they need to make quality decisions about changes that will negatively affect their software systems is a key aspect to mitigating those risks. This dissertation presents work performed to assist developers to collect and process data that plays a role in change decision-making during the maintenance phase. To address these problems, developers need a way to better understand the effects of a change prior to making the change. This research addresses the problems associated with increasing architectural complexity caused by software change using a twoold approach. The first approach is to characterize software changes to assess their architectural impact prior to their implementation. The second approach is to identify a set of architecture metrics that correlate to system quality and maintainability and to use these metrics to determine the level of difficulty involved in making a change. The two approaches have been combined and the results presented provide developers with a beneficial analysis framework that offers insight into the change process

    Proceedings of the Fifteenth Annual Software Engineering Workshop

    Get PDF
    The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given

    Proceedings of the 19th Annual Software Engineering Workshop

    Get PDF
    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document

    Manager's handbook for software development, revision 1

    Get PDF
    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying
    • …
    corecore