55 research outputs found

    The dynamics of information-driven coordination phenomena: a transfer entropy analysis

    Get PDF
    Data from social media are providing unprecedented opportunities to investigate the processes that rule the dynamics of collective social phenomena. Here, we consider an information theoretical approach to define and measure the temporal and structural signatures typical of collective social events as they arise and gain prominence. We use the symbolic transfer entropy analysis of micro-blogging time series to extract directed networks of influence among geolocalized sub-units in social systems. This methodology captures the emergence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the characteristic time-scale of the information transfer that flags the onset of information-driven collective phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of influence between social sub-units. In the absence of a clear exogenous driving, social collective phenomena can be represented as endogenously-driven structural transitions of the information transfer network. This study provides results that can help define models and predictive algorithms for the analysis of societal events based on open source data

    Risks of Discrimination through the Use of Algorithms. A study compiled with a grant from the Federal Anti-Discrimination Agency

    Get PDF
    Algorithms, including artificial intelligence, are used in a variety of ways to differentiate people, services, products or positions. This study uses examples to illustrate the technical and organisational causes of discrimination risks and analyses the resulting forms of discrimination. Its particular focus is on the social risks from algorithmic differentiation and automated decision-making, including injustice by generalisation, treatment of people as mere objects, restrictions on the free development of personality and informational self-determination, accumulation effects and growing inequality as well as risks to societal goals of equality or social policy. In these cases, there is a need for reforms of the anti-discrimination and data protection law, but also for societal considerations and definitions of which kinds of algorithmic differentiations are considered acceptable in a society in order to protect fundamental rights and values. Last but not least, the study discusses tasks for anti-discrimination agencies and equality bodies, ranging from the identification and proof of algorithm-based discrimination to preventive and cooperative actions

    Essays on modeling and analysis of dynamic sociotechnical systems

    Get PDF
    A sociotechnical system is a collection of humans and algorithms that interact under the partial supervision of a decentralized controller. These systems often display in- tricate dynamics and can be characterized by their unique emergent behavior. In this work, we describe, analyze, and model aspects of three distinct classes of sociotech- nical systems: financial markets, social media platforms, and elections. Though our work is diverse in subject matter content, it is unified though the study of evolution- and adaptation-driven change in social systems and the development of methods used to infer this change. We first analyze evolutionary financial market microstructure dynamics in the context of an agent-based model (ABM). The ABM’s matching engine implements a frequent batch auction, a recently-developed type of price-discovery mechanism. We subject simple agents to evolutionary pressure using a variety of selection mech- anisms, demonstrating that quantile-based selection mechanisms are associated with lower market-wide volatility. We then evolve deep neural networks in the ABM and demonstrate that elite individuals are profitable in backtesting on real foreign ex- change data, even though their fitness had never been evaluated on any real financial data during evolution. We then turn to the extraction of multi-timescale functional signals from large panels of timeseries generated by sociotechnical systems. We introduce the discrete shocklet transform (DST) and associated similarity search algorithm, the shocklet transform and ranking (STAR) algorithm, to accomplish this task. We empirically demonstrate the STAR algorithm’s invariance to quantitative functional parameteri- zation and provide use case examples. The STAR algorithm compares favorably with Twitter’s anomaly detection algorithm on a feature extraction task. We close by using STAR to automatically construct a narrative timeline of societally-significant events using a panel of Twitter word usage timeseries. Finally, we model strategic interactions between the foreign intelligence service (Red team) of a country that is attempting to interfere with an election occurring in another country, and the domestic intelligence service of the country in which the election is taking place (Blue team). We derive subgame-perfect Nash equilibrium strategies for both Red and Blue and demonstrate the emergence of arms race inter- ference dynamics when either player has “all-or-nothing” attitudes about the result of the interference episode. We then confront our model with data from the 2016 U.S. presidential election contest, in which Russian military intelligence interfered. We demonstrate that our model captures the qualitative dynamics of this interference for most of the time under stud
    • …
    corecore