2,722 research outputs found

    Multicast Multigroup Beamforming for Per-antenna Power Constrained Large-scale Arrays

    Get PDF
    Large in the number of transmit elements, multi-antenna arrays with per-element limitations are in the focus of the present work. In this context, physical layer multigroup multicasting under per-antenna power constrains, is investigated herein. To address this complex optimization problem low-complexity alternatives to semi-definite relaxation are proposed. The goal is to optimize the per-antenna power constrained transmitter in a maximum fairness sense, which is formulated as a non-convex quadratically constrained quadratic problem. Therefore, the recently developed tool of feasible point pursuit and successive convex approximation is extended to account for practical per-antenna power constraints. Interestingly, the novel iterative method exhibits not only superior performance in terms of approaching the relaxed upper bound but also a significant complexity reduction, as the dimensions of the optimization variables increase. Consequently, multicast multigroup beamforming for large-scale array transmitters with per-antenna dedicated amplifiers is rendered computationally efficient and accurate. A preliminary performance evaluation in large-scale systems for which the semi-definite relaxation constantly yields non rank-1 solutions is presented.Comment: submitted to IEEE SPAWC 2015. arXiv admin note: substantial text overlap with arXiv:1406.755

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Overlay networks for smart grids

    Get PDF
    corecore