23 research outputs found

    Design guidelines for limiting and eliminating virtual reality-induced symptoms and effects at work: a comprehensive, factor-oriented review

    Get PDF
    Virtual reality (VR) can induce side effects known as virtual reality-induced symptoms and effects (VRISE). To address this concern, we identify a literature-based listing of these factors thought to influence VRISE with a focus on office work use. Using those, we recommend guidelines for VRISE amelioration intended for virtual environment creators and users. We identify five VRISE risks, focusing on short-term symptoms with their short-term effects. Three overall factor categories are considered: individual, hardware, and software. Over 90 factors may influence VRISE frequency and severity. We identify guidelines for each factor to help reduce VR side effects. To better reflect our confidence in those guidelines, we graded each with a level of evidence rating. Common factors occasionally influence different forms of VRISE. This can lead to confusion in the literature. General guidelines for using VR at work involve worker adaptation, such as limiting immersion times to between 20 and 30 min. These regimens involve taking regular breaks. Extra care is required for workers with special needs, neurodiversity, and gerontechnological concerns. In addition to following our guidelines, stakeholders should be aware that current head-mounted displays and virtual environments can continue to induce VRISE. While no single existing method fully alleviates VRISE, workers' health and safety must be monitored and safeguarded when VR is used at work

    2017 Annual Research Symposium Abstract Book

    Get PDF
    2017 annual volume of abstracts for science research projects conducted by students at Trinity College

    On the psychological origins of tool use

    Get PDF
    The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own

    Projection of personal space and schema beyond the physical body

    Get PDF

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag

    Quantitative Motion Analysis of the Upper Limb: Establishment of Normative Kinematic Datasets and Systematic Comparison of Motion Analysis Systems

    Get PDF
    Upper limb prosthetic devices with advanced capabilities are currently in development. With these advancements brings to light the importance of objectively and quantitatively measuring effectiveness and benefit of these devices. Recently, the application of motion capture (i.e., digital tracking of upper body movements in space) to performance-based outcome measures has gained traction as a possible tool for human movement assessment that could facilitate optimal device selection, track rehabilitative progress, and inform device regulation and review. While motion capture shows promise, the clinical, regulatory, and industry communities would benefit from access to large clinical and normative datasets from different motion capture systems and a better understanding of advantages and limitations of different motion capture approaches. The first objective of this dissertation is to establish kinematic datasets of normative and upper-limb prosthesis user motion. The normative kinematic distributions of many performance-based outcome measures are not established, and it is difficult to determine departures from normative patterns without relevant clinical expertise. In Specific Aim 1, normative and clinically relevant datasets were created using a gold standard motion capture system to record participants performing standardized tasks from outcome measures. Without kinematic data, it is also difficult to identify informative kinematic features and tasks that exhibit characteristic differences from normative motion. The second objective is to identify salient kinematic characteristics associated with departures from normative motion. In Specific Aim 2, an unsupervised K-means machine learning algorithm was applied to the previously collected data to determine motions and tasks that distinguish between normative and prosthesis user movement. The third objective is to compare three commonly used motion capture systems that vary in motion tracking mechanisms. The most informative tasks and kinematic characteristics previously identified will be used to evaluate the detection of these differences for several motion capture systems with varying tracking methods in Specific Aim 3

    Life Sciences Program Tasks and Bibliography for FY 1996

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
    corecore