128 research outputs found

    Understanding Multicellularity: The Functional Organization of the Intercellular Space

    Get PDF
    The aim of this paper is to provide a theoretical framework to understand how multicellular systems realize functionally integrated physiological entities by organizing their intercellular space. From a perspective centered on physiology and integration, biological systems are often characterized as organized in such a way that they realize metabolic self-production and self-maintenance. The existence and activity of their components rely on the network they realize and on the continuous management of the exchange of matter and energy with their environment. One of the virtues of the organismic approach focused on organization is that it can provide an understanding of how biological systems are functionally integrated into coherent wholes. Organismic frameworks have been primarily developed by focusing on unicellular life. Multicellularity, however, presents additional challenges to our understanding of biological systems, related to how cells are capable to live together in higher-order entities, in such a way that some of their features and behaviors are constrained and controlled by the system they realize. Whereas most accounts of multicellularity focus on cell differentiation and increase in size as the main elements to understand biological systems at this level of organization, we argue that these factors are insufficient to provide an understanding of how cells are physically and functionally integrated in a coherent system. In this paper, we provide a new theoretical framework to understand multicellularity, capable to overcome these issues. Our thesis is that one of the fundamental theoretical principles to understand multicellularity, which is missing or underdeveloped in current accounts, is the functional organization of the intercellular space. In our view, the capability to be organized in space plays a central role in this context, as it enables (and allows to exploit all the implications of) cell differentiation and increase in size, and even specialized functions such as immunity. We argue that the extracellular matrix plays a crucial active role in this respect, as an evolutionary ancient and specific (non-cellular) control subsystem that contributes as a key actor to the functional specification of the multicellular space and to modulate cell fate and behavior. We also analyze how multicellular systems exert control upon internal movement and communication. Finally, we show how the organization of space is involved in some of the failures of multicellular organization, such as aging and cancer

    Evolution of biological cooperation: An algorithmic approach

    Get PDF
    This manuscript presents an algorithmic approach to cooperation in biological systems, drawing on fundamental ideas from statistical mechanics and probability theory. Fisher’s geometric model of adaptation suggests that the evolution of organisms well adapted to multiple constraints comes at a significant complexity cost. By utilizing combinatorial models of fitness, we demonstrate that the probability of adapting to all constraints decreases exponentially with the number of constraints, thereby generalizing Fisher’s result. Our main focus is understanding how cooperation can overcome this adaptivity barrier. Through these combinatorial models, we demonstrate that when an organism needs to adapt to a multitude of environmental variables, division of labor emerges as the only viable evolutionary strategy

    Reframing cognition:Getting down to biological basics

    Get PDF
    The premise of this two-part theme issue is simple: the cognitive sciences should join the rest of the life sciences in how they approach the quarry within their research domain. Specifically, understanding how organisms on the lower branches of the phylogenetic tree become familiar with, value and exploit elements of an ecological niche while avoiding harm can be expected to aid understanding of how organisms that evolved later (including Homo sapiens) do the same or similar things. We call this approach basal cognition. In this introductory essay, we explain what the approach involves. Because no definition of cognition exists that reflects its biological basis, we advance a working definition that can be operationalized; introduce a behaviour-generating toolkit of capacities that comprise the function (e.g. sensing/perception, memory, valence, learning, decision making, communication), each element of which can be studied relatively independently; and identify a (necessarily incomplete) suite of common biophysical mechanisms found throughout the domains of life involved in implementing the toolkit. The articles in this collection illuminate different aspects of basal cognition across different forms of biological organization, from prokaryotes and single-celled eukaryotes—the focus of Part 1—to plants and finally to animals, without and with nervous systems, the focus of Part 2. By showcasing work in diverse, currently disconnected fields, we hope to sketch the outline of a new multidisciplinary approach for comprehending cognition, arguably the most fascinating and hard-to-fathom evolved function on this planet. Doing so has the potential to shed light on problems in a wide variety of research domains, including microbiology, immunology, zoology, biophysics, botany, developmental biology, neurobiology/science, regenerative medicine, computational biology, artificial life and synthetic bioengineering

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres
    • …
    corecore