36 research outputs found

    Study of neural circuits using multielectrode arrays in movement disorders

    Full text link
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2022-2023. Tutor/Director: Rodríguez Allué, Manuel JoséNeurodegenerative movement-related disorders are characterized by a progressive degeneration and loss of neurons, which lead to motor control impairment. Although the precise mechanisms underlying these conditions are still unknown, an increasing number of studies point towards the analysis of neural networks and functional connectivity to unravel novel insights. The main objective of this work is to understand cellular mechanisms related to dysregulated motor control symptoms in movement disorders, such as Chorea-Acanthocytosis (ChAc), by employing multielectrode arrays to analyze the electrical activity of neuronal networks in mouse models. We found no notable differences in cell viability between neurons with and without VPS13A knockdown, that is the only gene known to be implicated in the disease, suggesting that the absence of VPS13A in neurons may be partially compensated by other proteins. The MEA setup used to capture the electrical activity from neuron primary cultures is described in detail, pointing out its specific characteristics. At last, we present the alternative backup approach implemented to overcome the challenges faced during the research process and to explore the advanced algorithms for signal processing and analysis. In this report, we present a thorough account of the conception and implementation of our research, outlining the multiple limitations that have been encountered all along the course of the project. We provide a detailed analysis on the project’s economical and technical feasibility, as well as a comprehensive overview of the ethical and legal aspects considered during the execution

    In vitro neuronal cultures on MEA: an engineering approach to study physiological and pathological brain networks

    Get PDF
    Reti neuronali accoppiate a matrici di microelettrodi: un metodo ingegneristico per studiare reti cerebrali in situazioni fisiologiche e patologich

    Development of multi-depth probing 3D microelectrode array to record electrophysiological activity within neural cultures

    Get PDF
    Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons' networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies

    A novel Three-Dimensional Micro-Electrode Array for in-vitro electrophysiological applications

    Get PDF
    Microelectrode arrays (MEAs) represent a powerful and popular tool to study in vitro neuronal networks and acute brain slices. The research standard for MEAs is planar or 2D-MEAs, which have been in existence for over 30 years and used for extracellular recording and stimulation from cultured neuronal cells and tissue slices. However, planar MEAs suffer from rapid data attenuation in the z-direction when stimulating/recording from 3D in-vitro neuronal cultures or brain slices. The existing proposed 3D in-vitro neuronal models allow to record the electrophysiological activity of the 3D network only from the bottom layer (i.e. the one directly coupled to the planar MEAs). Thus, to further develop and optimize such 3D neuronal network systems and to study and understand how the 3D neuronal network dynamics changes in different layers of the 3D structure, new three-dimensional microelectrodes arrays (3D-MEAs) are required. Early attempts in this field resulted in interesting integrated approaches toward protruding or spiked 3D-MEAs. Although these first prototypes could be successfully employed with brain slices, the limited heights of the electrodes (up to max 70 \u3bcm) and the peculiar shape of the recording areas made them not an ideal solution for 3D neuronal cultures. Moreover, a convenient and versatile method for the fabrication of multilevel 3D microelectrode arrays has yet to be obtained, due to the usually complicated and expensive designs and a lack of a full compatibility with standard MEAs both in terms of materials and recording area dimensions. To overcome the afore-mentioned challenges, in this work, I present the design, microfabrication, and characterization of a new 3D-MEA composed of pillar-shaped gold 3D structures with heights of more than 100 \u3bcm that can be used, in principle, on every kind of MEA, both custom-made and commercial. I successfully demonstrate the capability and ability of such 3D-MEA to record electrophysiological spontaneous activity from 3D engineered in-vitro neuronal networks and both 4-AP-induced epileptiform-like and electrically-evoked activity from mouse acute brain slices. I also demonstrate how the developed 3D-MEA allows better recording and stimulating conditions while interfacing with acute brain slices as compared to planar electrode arrays and previously reported 3D MEA technologies

    Development of multi-depth probing 3D microelectrode array to record electrophysiological activity within neural cultures

    Get PDF
    Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons’ networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies

    Connectivity Measures for In Vitro Neuronal Cell Networks

    Get PDF
    In this thesis, different connectivity measures are reviewed in detail in order to investigate what kind of information they provide, what are the advantages and limitations of them. Based on the literature review comparison, we selected three methods; Phase Lock Value (PLV), generalized Partial Directed Coherence (gPDC) and Transfer Entropy (TE). The selected methods were tested and evaluated with the data from human embryonic stem cell derived neuronal cell (hESC) networks which are cultured on MEAs. The analysis is divided into two parts: simulated connectivity signal studies and real MEA data analysis.The simulation study indicates that PLV method correctly recognized the connections, while gPDC provided unreliable results. TE provided the most detailed results only with few inaccuracies. Based on the simulation results, TE and PLV seem potential for further research on MEA signals. However, incoherent results were obtained in real MEA data analysis. For example, PLV claimed connections between signals measured from different wells. Based on the results, further research is needed in order to assess whether the incoherencies are influenced by the measurement environment, the methods themselves, or by the quality problem of signals in 6-well MEA
    corecore