19,957 research outputs found

    The State of Speech in HCI: Trends, Themes and Challenges

    Get PDF

    Information scraps: how and why information eludes our personal information management tools

    No full text
    In this paper we describe information scraps -- a class of personal information whose content is scribbled on Post-it notes, scrawled on corners of random sheets of paper, buried inside the bodies of e-mail messages sent to ourselves, or typed haphazardly into text files. Information scraps hold our great ideas, sketches, notes, reminders, driving directions, and even our poetry. We define information scraps to be the body of personal information that is held outside of its natural or We have much still to learn about these loose forms of information capture. Why are they so often held outside of our traditional PIM locations and instead on Post-its or in text files? Why must we sometimes go around our traditional PIM applications to hold on to our scraps, such as by e-mailing ourselves? What are information scraps' role in the larger space of personal information management, and what do they uniquely offer that we find so appealing? If these unorganized bits truly indicate the failure of our PIM tools, how might we begin to build better tools? We have pursued these questions by undertaking a study of 27 knowledge workers. In our findings we describe information scraps from several angles: their content, their location, and the factors that lead to their use, which we identify as ease of capture, flexibility of content and organization, and avilability at the time of need. We also consider the personal emotive responses around scrap management. We present a set of design considerations that we have derived from the analysis of our study results. We present our work on an application platform, jourknow, to test some of these design and usability findings

    Investigations of the effects of different computer input methods on man–computer interaction

    Get PDF
    The development of interactive man-computer systems is a design process wherein various alternatives must be considered from different points of view. In order to make design decisions, information guidelines are needed. Among the requirements are those for different input methods of computers. This thesis has the objective of providing information and guidelines on how different input methods affect man–computer interaction. The objective is reached through a number of stages: a review of literature; the development of a framework for investigation; deriving and testing experimental hypotheses, and discussing and presenting information for future researchers and designers. [Continues.

    Learning designs incorporating animated pedagogical agents: Their potential for improving academic writing competence, writing self-efficacy, and reducing writing anxiety

    Get PDF
    Academic writing can be extremely challenging, especially for new university students. This is compounded by the mass-migration of courses to online delivery, which further increases the complexity of acquiring writing skills. Animated pedagogical agents (APAs) have shown promise in addressing these problems, because they simulate authentic face-to-face social interactions thereby potentially increasing student engagement, motivation, and favourable emotions conducive to learning. This study’s first aim was to examine the impact of learning designs employing APAs on novice learners’ academic writing, writing anxiety, and writing self-efficacy. Its second aim was to examine the influence of various delivery options (didactic delivery or scaffolded questioning) with support messages (emotional, motivational or neither) on writing competence, writing anxiety and writing self-efficacy. These aims were achieved in a mixed-method study that included six experimental conditions tested using two multimedia academic writing lessons provided to 106 participants who were new to Australian tertiary studies. Quantitative data were collected immediately before and after the lessons (Phase 1), while qualitative data were obtained by interviews with a subset of participants after Lesson 2 (Phase 2). The impact of the independent variable combinations on the dependent variables were examined quantitatively (General Linear Modelling, t-tests) and qualitatively (thematic analysis). The results demonstrate that completing two academic writing lessons with APAs can increase writing competence and self-efficacy, and reduce writing anxiety. However, no significant differences were found between the support and delivery groups. Despite the lack of significant inter-group differences, more participants from the emotional group reported that their negative emotions were reduced because of the lesson. Also, all the participants in the motivational group reported perceptions of writing improvement as a result of attending the lessons. The overall positive result suggests promising possibilities for writing support delivered online to counter student under preparedness for academic writing

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: • 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. • 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. • 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings
    • …
    corecore