191,234 research outputs found

    Measuring excitation-energy transfer with a real-time time-dependent density functional theory approach

    Full text link
    We investigate the time an electronic excitation travels in a supermolecular setup using a measurement process in an open quantum-system framework. The approach is based on the stochastic Schr\"odinger equation and uses a Hamiltonian from time-dependent density functional theory (TDDFT). It treats electronic-structure properties and intermolecular coupling on the level of TDDFT, while it opens a route to the description of dissipation and relaxation via a bath operator that couples to the dipole moment of the density. Within our study, we find that in supermolecular setups small deviations of the electronic structure from the perfectly resonant case have only minor influence on the pathways of excitation-energy transfer, thus lead to similar transfer times. Yet, sizable defects cause notable slowdown of the energy spread

    Detection of spin bias in four-terminal quantum-dot ring

    Full text link
    In this work, we show that in a four-quantum-dot ring, via introducing a local Rashba spin-orbit interaction the spin bias in the transverse terminals can be detected by observing the charge currents in the longitudinal probes. It is found that due to the Rashba interaction, the quantum interference in this system becomes spin-dependent and the opposite-spin currents induced by the spin bias can present different magnitudes, so charge currents emerge. Besides, the charge currents rely on both the magnitude and spin polarization direction of the spin bias. It is believed that this method provides an electrical but practical scheme to detect the spin bias (or the spin current).Comment: 6 pages, 5 figure

    Quantum Critical Environment Assisted Quantum Magnetometer

    Full text link
    A central qubit coupled to an Ising ring of NN qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the Quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of NN values.Comment: 10 pages, 9 figure

    Topological effects in ring polymers: A computer simulation study

    Full text link
    Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring chains due to the presence of topological constraints. We study this by computer simulation using the bond-fluctuation algorithm for chains with up to N=512 statistical segments at a volume fraction \Phi=0.5 and show that rings in the melt are more compact than gaussian chains. A careful finite size analysis of the average ring size R \propto N^{\nu} yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like argument for the topologica interactions. We show (using the same algorithm) that the dynamics of molten rings is similar to that of linear chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than that of corresponding linear chains. For the ring sizes considered (up to 256 statistical segments) we find only one characteristic time scale \tau_{ee} \propto N^{2.0(2); this is shown by the collapse of several mean-square displacements and correlation functions onto corresponding master curves. Because of the shrunken state of the chain, this scaling is not compatible with simple Rouse motion. It applies for all sizes of ring studied and no sign of a crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late

    Conserved Linking in Single- and Double-Stranded Polymers

    Full text link
    We demonstrate a variant of the Bond Fluctuation lattice Monte Carlo model in which moves through cis conformations are forbidden. Ring polymers in this model have a conserved quantity that amounts to a topological linking number. Increased linking number reduces the radius of gyration mildly. A linking number of order 0.2 per bond leads to an eight-percent reduction of the radius for 128-bond chains. This percentage appears to rise with increasing chain length, contrary to expectation. For ring chains evolving without the conservation of linking number, we demonstrate a substantial anti-correlation between the twist and writhe variables whose sum yields the linking number. We raise the possibility that our observed anti-correlations may have counterparts in the most important practical polymer that conserves linking number, DNA.Comment: Revised title, minor changes, updated references. 36 pages, including 14 figures. More formats available at http://rainbow.uchicago.edu/~plewa/webpaper

    Symmetry-enhanced supertransfer of delocalized quantum states

    Get PDF
    Coherent hopping of excitation rely on quantum coherence over physically extended states. In this work, we consider simple models to examine the effect of symmetries of delocalized multi-excitation states on the dynamical timescales, including hopping rates, radiative decay, and environmental interactions. While the decoherence (pure dephasing) rate of an extended state over N sites is comparable to that of a non-extended state, superradiance leads to a factor of N enhancement in decay and absorption rates. In addition to superradiance, we illustrate how the multi-excitonic states exhibit `supertransfer' in the far-field regime: hopping from a symmetrized state over N sites to a symmetrized state over M sites at a rate proportional to MN. We argue that such symmetries could play an operational role in physical systems based on the competition between symmetry-enhanced interactions and localized inhomogeneities and environmental interactions that destroy symmetry. As an example, we propose that supertransfer and coherent hopping play a role in recent observations of anomolously long diffusion lengths in nano-engineered assembly of light-harvesting complexes.Comment: 6 page
    corecore