5,908 research outputs found

    Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations

    Get PDF
    The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded. The aim of this paper is to outline fundamental concepts and principles of the Agent-Based Modelling (ABM) paradigm, with particular reference to the development of geospatial simulations. The paper begins with a brief definition of modelling, followed by a classification of model types, and a comment regarding a shift (in certain circumstances) towards modelling systems at the individual-level. In particular, automata approaches (e.g. Cellular Automata, CA, and ABM) have been particularly popular, with ABM moving to the fore. A definition of agents and agent-based models is given; identifying their advantages and disadvantages, especially in relation to geospatial modelling. The potential use of agent-based models is discussed, and how-to instructions for developing an agent-based model are provided. Types of simulation / modelling systems available for ABM are defined, supplemented with criteria to consider before choosing a particular system for a modelling endeavour. Information pertaining to a selection of simulation / modelling systems (Swarm, MASON, Repast, StarLogo, NetLogo, OBEUS, AgentSheets and AnyLogic) is provided, categorised by their licensing policy (open source, shareware / freeware and proprietary systems). The evaluation (i.e. verification, calibration, validation and analysis) of agent-based models and their output is examined, and noteworthy applications are discussed.Geographical Information Systems (GIS) are a particularly useful medium for representing model input and output of a geospatial nature. However, GIS are not well suited to dynamic modelling (e.g. ABM). In particular, problems of representing time and change within GIS are highlighted. Consequently, this paper explores the opportunity of linking (through coupling or integration / embedding) a GIS with a simulation / modelling system purposely built, and therefore better suited to supporting the requirements of ABM. This paper concludes with a synthesis of the discussion that has proceeded

    A Survey of Search-Based Refactoring for Software Maintenance

    Get PDF
    Abstract This survey reviews published materials related to the specific area of Search-Based Software Engineering that concerns software maintenance and, in particular, refactoring. The survey aims to give a comprehensive review of the use of search-based refactoring to maintain software. Fifty different papers have been selected from online databases to analyze and review the use of search-based refactoring in software engineering. The current state of the research is analyzed and patterns in the studies are investigated in order to assess gaps in the area and suggest opportunities for future research. The papers reviewed are tabulated in order to aid researchers in quickly referencing studies. The literature addresses different methods using search-based refactoring for software maintenance, as well as studies that investigate the optimization process and discuss components of the search. There are studies that analyze different software metrics, experiment with multi-objective techniques and propose refactoring tools for use. Analysis of the literature has indicated some opportunities for future research in the area. More experimentation of the techniques in an industrial environment and feedback from software developers is needed to support the approaches. Also, recent work with multi-objective techniques has shown that there are exciting possibilities for future research using these techniques with refactoring. This survey is beneficial as an introduction for any researchers aiming to work in the area of Search-Based Software Engineering with respect to software maintenance and will allow them to gain an understanding of the current landscape of the research and the insights gathered

    The 6th Conference of PhD Students in Computer Science

    Get PDF

    A PSO Application in Skull Prosthesis Modelling by Superellipse

    Get PDF
    This paper presents a method to create the geometric model of skull defects to be applied in anatomic prosthesis modelling. The approach is to generate an image that represents the missing information in the skull when bone's defect is non-symmetric. We are proposing the use of superellipse concept to recover the parameters that represents the geometric shape of a skull bone curvature in tomography. If the superellipse is properly adjusted in each computed tomography slice, the arcs that represent the piece of missing bone can be modelled in 3D. The problem is that many similar ellipses can be created, and the best solution must be found. This research applies the Particle Swarm Optimization (PSO) algorithm in order to find the best solution for each tomographic slice. Once the solution found for each slice, the whole 3D missing information can be virtually rebuilt as an adjusted prosthesis model image

    A PSO Application in Skull Prosthesis Modelling by Superellipse

    Get PDF
    This paper presents a method to create the geometric model of skull defects to be applied in anatomic prosthesis modelling. The approach is to generate an image that represents the missing information in the skull when bone`s defect is non-symmetric. We are proposing the use of superellipse concept to recover the parameters that represents the geometric shape of a skull bone curvature in tomography. If the superellipse is properly adjusted in each computed tomography slice, the arcs that represent the piece of missing bone can be modelled in 3D. The problem is that many similar ellipses can be created, and the best solution must be found. This research applies the Particle Swarm Optimization (PSO) algorithm in order to find the best solution for each tomographic slice. Once the solution found for each slice, the whole 3D missing information can be virtually rebuilt as an adjusted prosthesis model image

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future
    • …
    corecore