145 research outputs found

    Excellentia Eminentia Effectio

    Get PDF
    "In these pages you will learn about the fascinating research endeavors that each of our faculty members is undertaking. We have divided their research into the broad categories of health, sustainability, information, and systems. While we recognize the imperfect nature of categorizing research that, by its very nature may be interdisciplinary or transdisciplinary, we nonetheless believe it will be helpful as a way to see the depth and breadth of our research endeavors within each grouping. As you read the profiles on these pages, I know you will begin to appreciate that, taken as a whole, the research spectrum at Columbia Engineering is exceptional and that, as our professors go about their work, they are at the cusp of making breakthroughs that will have a major impact on the way we live our lives today and tomorrow.

    Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)

    Get PDF

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Ray tracing in a turbulent, shallow-water channel

    Get PDF

    Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections

    Get PDF
    As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed [1]. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra

    From Statistical Physics to Algorithms in Deep Neural Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    Get PDF

    Acoustic Waves

    Get PDF
    The concept of acoustic wave is a pervasive one, which emerges in any type of medium, from solids to plasmas, at length and time scales ranging from sub-micrometric layers in microdevices to seismic waves in the Sun's interior. This book presents several aspects of the active research ongoing in this field. Theoretical efforts are leading to a deeper understanding of phenomena, also in complicated environments like the solar surface boundary. Acoustic waves are a flexible probe to investigate the properties of very different systems, from thin inorganic layers to ripening cheese to biological systems. Acoustic waves are also a tool to manipulate matter, from the delicate evaporation of biomolecules to be analysed, to the phase transitions induced by intense shock waves. And a whole class of widespread microdevices, including filters and sensors, is based on the behaviour of acoustic waves propagating in thin layers. The search for better performances is driving to new materials for these devices, and to more refined tools for their analysis

    Speaker comfort and increase of voice level in lecture rooms

    Get PDF
    corecore