7 research outputs found

    Investigating The Algebraic Structure of Dihomotopy Types

    Get PDF
    This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea is that the category of homotopy types can be embedded in a new category of dihomotopy types, the embedding being realized by the Globe functor. In this latter category, isomorphism classes of objects are exactly higher dimensional automata up to deformations leaving invariant their computer scientific properties as presence or not of deadlocks (or everything similar or related). Some hints to study the algebraic structure of dihomotopy types are given, in particular a rule to decide whether a statement/notion concerning dihomotopy types is or not the lifting of another statement/notion concerning homotopy types. This rule does not enable to guess what is the lifting of a given notion/statement, it only enables to make the verification, once the lifting has been found.Comment: 28 pages ; LaTeX2e + 4 figures ; Expository paper ; Minor typos corrections ; To appear in GETCO'01 proceeding

    Contributions to Directed Algebraic Topology:with inspirations from concurrency theory

    Get PDF

    Research Evaluation 2000-2010:Department of Mathematical Sciences

    Get PDF

    On the Expressiveness of Higher Dimensional Automata: (Extended Abstract)

    Get PDF
    In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature.I also extend various equivalence relations for concurrent systems to higher dimensional automata. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the ST-bisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in higher dimensional automata, it is now well-defined whether members of different models of concurrency are equivalent

    On the expressiveness of higher dimensional automata

    Get PDF
    In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata (HDA), which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature. I also extend various equivalence relations for concurrent systems to HDA. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the ST-bisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in HDA, it is now well-defined whether members of different models of concurrency are equivalent. (c) 2006 Elsevier B.V. All rights reserved
    corecore