4,766 research outputs found

    Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda

    Get PDF
    Workers play essential roles in manufacturing and logistics. Releasing workers from routine tasks and enabling them to focus on creative, value-adding activities can enhance their performance and wellbeing, and it is also key to the successful implementation of Industry 4.0. One technology that can help identify patterns of worker-system interaction is Eye Tracking (ET), which is a non-intrusive technology for measuring human eye movements. ET can provide moment-by-moment insights into the cognitive state of the subject during task execution, which can improve our understanding of how humans behave and make decisions within complex systems. It also enables explorations of the subject’s interaction mode with the working environment. Earlier research has investigated the use of ET in manufacturing and logistics, but the literature is fragmented and has not yet been discussed in a literature review yet. This article therefore conducts a systematic literature review to explore the applications of ET, summarise its benefits, and outline future research opportunities of using ET in manufacturing and logistics. We first propose a conceptual framework to guide our study and then conduct a systematic literature search in scholarly databases, obtaining 71 relevant papers. Building on the proposed framework, we systematically review the use of ET and categorize the identified papers according to their application in manufacturing (product development, production, quality inspection) and logistics. Our results reveal that ET has several use cases in the manufacturing sector, but that its application in logistics has not been studied extensively so far. We summarize the benefits of using ET in terms of process performance, human performance, and work environment and safety, and also discuss the methodological characteristics of the ET literature as well as typical ET measures used. We conclude by illustrating future avenues for ET research in manufacturing and logistics

    Effects of appearance and gender on pre-touch proxemics in virtual reality

    Get PDF
    Virtual reality (VR) environments are increasingly popular for various applications, and the appearance of virtual characters is a critical factor that influences user behaviors. In this study, we aimed to investigate the impact of avatar and agent appearances on pre-touch proxemics in VR. To achieve this goal, we designed experiments utilizing three user avatars (man/woman/robot) and three virtual agents (man/woman/robot). Specifically, we measured the pre-touch reaction distances to the face and body, which are the distances at which a person starts to feel uncomfortable before being touched. We examined how these distances varied based on the appearances of avatars, agents, and user gender. Our results revealed that the appearance of avatars and agents significantly impacted pre-touch reaction distances. Specifically, those using a female avatar tended to maintain larger distances before their face and body to be touched, and people also preferred greater distances before being touched by a robot agent. Interestingly, we observed no effects of user gender on pre-touch reaction distances. These findings have implications for the design and implementation of VR systems, as they suggest that avatar and agent appearances play a significant role in shaping users’ perceptions of pre-touch proxemics. Our study highlights the importance of considering these factors when creating immersive and socially acceptable VR experiences

    Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction

    Get PDF
    Meyer zu Borgsen S. Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction. Bielefeld: Universität Bielefeld; 2020.This doctoral thesis investigates the influence of nonverbal communication on human-robot object handover. Handing objects to one another is an everyday activity where two individuals cooperatively interact. Such close interactions incorporate a lot of nonverbal communication in order to create alignment in space and time. Understanding and transferring communication cues to robots becomes more and more important as e.g. service robots are expected to closely interact with humans in the near future. Their tasks often include delivering and taking objects. Thus, handover scenarios play an important role in human-robot interaction. A lot of work in this field of research focuses on speed, accuracy, and predictability of the robot’s movement during object handover. Still, robots need to be enabled to closely interact with naive users and not only experts. In this work I present how nonverbal communication can be implemented in robots to facilitate smooth handovers. I conducted a study on people with different levels of experience exchanging objects with a humanoid robot. It became clear that especially users with only little experience in regard to interaction with robots rely heavily on the communication cues they are used to on the basis of former interactions with humans. I added different gestures with the second arm, not directly involved in the transfer, to analyze the influence on synchronization, predictability, and human acceptance. Handing an object has a special movement trajectory itself which has not only the purpose of bringing the object or hand to the position of exchange but also of socially signalizing the intention to exchange an object. Another common type of nonverbal communication is gaze. It allows guessing the focus of attention of an interaction partner and thus helps to predict the next action. In order to evaluate handover interaction performance between human and robot, I applied the developed concepts to the humanoid robot Meka M1. By adding the humanoid robot head named Floka Head to the system, I created the Floka humanoid, to implement gaze strategies that aim to increase predictability and user comfort. This thesis contributes to the field of human-robot object handover by presenting study outcomes and concepts along with an implementation of improved software modules resulting in a fully functional object handing humanoid robot from perception and prediction capabilities to behaviors enhanced and improved by features of nonverbal communication

    Responses to human-like artificial agents : effects of user and agent characteristics

    Get PDF

    Extending Quantitative Proxemics and Trust to HRI

    Get PDF
    Human-robot interaction (HRI) requires quantitative models of proxemics and trust for robots to use in negotiating with people for space. Hall’s theory of proxemics has been used for decades to describe social interaction distances but has lacked detailed quantitative models and generative explanations to apply to these cases. In the limited case of autonomous vehicle interactions with pedestrians crossing a road, a recent model has explained the quantitative sizes of Hall’s distances to 4% error and their links to the concept of trust in human interactions. The present study extends this model by generalising several of its assumptions to cover further cases including human-human and human-robot interactions. It tightens the explanations of Hall zones from 4% to 1% error and fits several more recent empirical HRI results. This may help to further unify these disparate fields and quantify them to a level which enables real-world operational HRI applications
    • …
    corecore