139 research outputs found

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback

    Investigating perceptual congruence between information and sensory parameters in auditory and vibrotactile displays

    Get PDF
    A fundamental interaction between a computer and its user(s) is the transmission of information between the two and there are many situations where it is necessary for this interaction to occur non-visually, such as using sound or vibration. To design successful interactions in these modalities, it is necessary to understand how users perceive mappings between information and acoustic or vibration parameters, so that these parameters can be designed such that they are perceived as congruent. This thesis investigates several data-sound and data-vibration mappings by using psychophysical scaling to understand how users perceive the mappings. It also investigates the impact that using these methods during design has when they are integrated into an auditory or vibrotactile display. To investigate acoustic parameters that may provide more perceptually congruent data-sound mappings, Experiments 1 and 2 explored several psychoacoustic parameters for use in a mapping. These studies found that applying amplitude modulation — or roughness — to a signal, or applying broadband noise to it resulted in performance which were similar to conducting the task visually. Experiments 3 and 4 used scaling methods to map how a user perceived a change in an information parameter, for a given change in an acoustic or vibrotactile parameter. Experiment 3 showed that increases in acoustic parameters that are generally considered undesirable in music were perceived as congruent with information parameters with negative valence such as stress or danger. Experiment 4 found that data-vibration mappings were more generalised — a given increase in a vibrotactile parameter was almost always perceived as an increase in an information parameter — regardless of the valence of the information parameter. Experiments 5 and 6 investigated the impact that using results from the scaling methods used in Experiments 3 and 4 had on users' performance when using an auditory or vibrotactile display. These experiments also explored the impact that the complexity of the context which the display was placed had on user performance. These studies found that using mappings based on scaling results did not significantly impact user's performance with a simple auditory display, but it did reduce response times in a more complex use-case

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented—people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people’s body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people’s general emotional state as well as the various bodily dimensions investigated—movement, proprioceptive awareness and feelings about one’s body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented¿people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people's body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people's general emotional state as well as the various bodily dimensions investigated¿movement, proprioceptive awareness and feelings about one's body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation.We acknowledge funding by the Spanish Agencia Estatal de Investigación (PID2019-105579RB-I00/AEI/10.13039/501100011033) and the European Research Council Grant (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101002711). JL is funded by the Ministry of Economy, Industry and Competitivity of Spain (doctoral training Grant BES-2017-080471). OD is funded by the Volkswagen Foundation (Co-Sense grant). FB is partially funded by the ELEMENT project (ANR-18-CE33-0002)

    3D-Sonification for Obstacle Avoidance in Brownout Conditions

    Get PDF
    Helicopter brownout is a phenomenon that occurs when making landing approaches in dusty environments, whereby sand or dust particles become swept up in the rotor outwash. Brownout is characterized by partial or total obscuration of the terrain, which degrades visual cues necessary for hovering and safe landing. Furthermore, the motion of the dust cloud produced during brownout can lead to the pilot experiencing motion cue anomalies such as vection illusions. In this context, the stability and guidance control functions can be intermittently or continuously degraded, potentially leading to undetected surface hazards and obstacles as well as unnoticed drift. Safe and controlled landing in brownout can be achieved using an integrated presentation of LADAR and RADAR imagery and aircraft state symbology. However, though detected by the LADAR and displayed on the sensor image, small obstacles can be difficult to discern from the background so that changes in obstacle elevation may go unnoticed. Moreover, pilot workload associated with tracking the displayed symbology is often so high that the pilot cannot give sufficient attention to the LADAR/RADAR image. This paper documents a simulation evaluating the use of 3D auditory cueing for obstacle avoidance in brownout as a replacement for or compliment to LADAR/RADAR imagery

    Loudness affects motion: asymmetric volume of auditory feedback results in asymmetric gait in healthy young adults

    Get PDF
    Background: The potential of auditory feedback for motor learning in the rehabilitation of various diseases has become apparent in recent years. However, since the volume of auditory feedback has played a minor role so far and its influence has hardly been considered, we investigate the volume effect of auditory feedback on gait pattern and gait direction and its interaction with pitch. Methods: Thirty-two healthy young participants were randomly divided into two groups: Group 1 (n = 16) received a high pitch (150-250 Hz) auditory feedback; group 2 (n = 16) received a lower pitch (95-112 Hz) auditory feedback. The feedback consisted of a real-time sonification of the right and left foot ground contact. After an initial condition (no auditory feedback and full vision), both groups realized a 30-minute habituation period followed by a 30-minute asymmetry period. At any condition, the participants were asked to walk blindfolded and with auditory feedback towards a target at 15 m distance and were stopped 5 m before the target. Three different volume conditions were applied in random order during the habituation period: loud, normal, and quiet. In the subsequent asymmetry period, the three volume conditions baseline, right quiet and left quiet were applied in random order. Results: In the habituation phase, the step width from the loud to the quiet condition showed a significant interaction of volume*pitch with a decrease at high pitch (group 1) and an increase at lower pitch (group 2) (group 1: loud 1.02 ± 0.310, quiet 0.98 ± 0.301; group 2: loud 0.95 ± 0.229, quiet 1.11 ± 0.298). In the asymmetry period, a significantly increased ground contact time on the side with reduced volume could be found (right quiet: left foot 0.988 ± 0.033, right foot 1.003 ± 0.040, left quiet: left foot 1.004 ± 0.036, right foot 1.002 ± 0.033). Conclusions: Our results suggest that modifying the volume of auditory feedback can be an effective way to improve gait symmetry. This could facilitate gait therapy and rehabilitation of hemiparetic and arthroplasty patients, in particular if gait improvement based on verbal corrections and conscious motor control is limited. © 2022, The Author(s)
    • …
    corecore