465 research outputs found

    Electrotactile feedback applications for hand and arm interactions: A systematic review, meta-analysis, and future directions

    Get PDF
    Haptic feedback is critical in a broad range of human-machine/computer-interaction applications. However, the high cost and low portability/wearability of haptic devices remain unresolved issues, severely limiting the adoption of this otherwise promising technology. Electrotactile interfaces have the advantage of being more portable and wearable due to their reduced actuators' size, as well as their lower power consumption and manufacturing cost. The applications of electrotactile feedback have been explored in human-computer interaction and human-machine-interaction for facilitating hand-based interactions in applications such as prosthetics, virtual reality, robotic teleoperation, surface haptics, portable devices, and rehabilitation. This paper presents a technological overview of electrotactile feedback, as well a systematic review and meta-analysis of its applications for hand-based interactions. We discuss the different electrotactile systems according to the type of application. We also discuss over a quantitative congregation of the findings, to offer a high-level overview into the state-of-art and suggest future directions. Electrotactile feedback systems showed increased portability/wearability, and they were successful in rendering and/or augmenting most tactile sensations, eliciting perceptual processes, and improving performance in many scenarios. However, knowledge gaps (e.g., embodiment), technical (e.g., recurrent calibration, electrodes' durability) and methodological (e.g., sample size) drawbacks were detected, which should be addressed in future studies.Comment: 18 pages, 1 table, 8 figures, under review in Transactions on Haptics. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Upon acceptance of the article by IEEE, the preprint article will be replaced with the accepted versio

    Eyes-Off Physically Grounded Mobile Interaction

    Get PDF
    This thesis explores the possibilities, challenges and future scope for eyes-off, physically grounded mobile interaction. We argue that for interactions with digital content in physical spaces, our focus should not be constantly and solely on the device we are using, but fused with an experience of the places themselves, and the people who inhabit them. Through the design, development and evaluation of a series ofnovel prototypes we show the benefits of a more eyes-off mobile interaction style.Consequently, we are able to outline several important design recommendations for future devices in this area.The four key contributing chapters of this thesis each investigate separate elements within this design space. We begin by evaluating the need for screen-primary feedback during content discovery, showing how a more exploratory experience can be supported via a less-visual interaction style. We then demonstrate how tactilefeedback can improve the experience and the accuracy of the approach. In our novel tactile hierarchy design we add a further layer of haptic interaction, and show how people can be supported in finding and filtering content types, eyes-off. We then turn to explore interactions that shape the ways people interact with aphysical space. Our novel group and solo navigation prototypes use haptic feedbackfor a new approach to pedestrian navigation. We demonstrate how variations inthis feedback can support exploration, giving users autonomy in their navigationbehaviour, but with an underlying reassurance that they will reach the goal.Our final contributing chapter turns to consider how these advanced interactionsmight be provided for people who do not have the expensive mobile devices that areusually required. We extend an existing telephone-based information service to support remote back-of-device inputs on low-end mobiles. We conclude by establishingthe current boundaries of these techniques, and suggesting where their usage couldlead in the future

    Design and Effect of Continuous Wearable Tactile Displays

    Get PDF
    Our sense of touch is one of our core senses and while not as information rich as sight and hearing, it tethers us to reality. Our skin is the largest sensory organ in our body and we rely on it so much that we don\u27t think about it most of the time. Tactile displays - with the exception of actuators for notifications on smartphones and smartwatches - are currently understudied and underused. Currently tactile cues are mostly used in smartphones and smartwatches to notify the user of an incoming call or text message. Specifically continuous displays - displays that do not just send one notification but stay active for an extended period of time and continuously communicate information - are rarely studied. This thesis aims at exploring the utilization of our vibration perception to create continuous tactile displays. Transmitting a continuous stream of tactile information to a user in a wearable format can help elevate tactile displays from being mostly used for notifications to becoming more like additional senses enabling us to perceive our environment in new ways. This work provides a serious step forward in design, effect and use of continuous tactile displays and their use in human-computer interaction. The main contributions include: Exploration of Continuous Wearable Tactile Interfaces This thesis explores continuous tactile displays in different contexts and with different types of tactile information systems. The use-cases were explored in various domains for tactile displays - Sports, Gaming and Business applications. The different types of continuous tactile displays feature one- or multidimensional tactile patterns, temporal patterns and discrete tactile patterns. Automatic Generation of Personalized Vibration Patterns In this thesis a novel approach of designing vibrotactile patterns without expert knowledge by leveraging evolutionary algorithms to create personalized vibration patterns - is described. This thesis presents the design of an evolutionary algorithm with a human centered design generating abstract vibration patterns. The evolutionary algorithm was tested in a user study which offered evidence that interactive generation of abstract vibration patterns is possible and generates diverse sets of vibration patterns that can be recognized with high accuracy. Passive Haptic Learning for Vibration Patterns Previous studies in passive haptic learning have shown surprisingly strong results for learning Morse Code. If these findings could be confirmed and generalized, it would mean that learning a new tactile alphabet could be made easier and learned in passing. Therefore this claim was investigated in this thesis and needed to be corrected and contextualized. A user study was conducted to study the effects of the interaction design and distraction tasks on the capability to learn stimulus-stimulus-associations with Passive Haptic Learning. This thesis presents evidence that Passive Haptic Learning of vibration patterns induces only a marginal learning effect and is not a feasible and efficient way to learn vibration patterns that include more than two vibrations. Influence of Reference Frames for Spatial Tactile Stimuli Designing wearable tactile stimuli that contain spatial information can be a challenge due to the natural body movement of the wearer. An important consideration therefore is what reference frame to use for spatial cues. This thesis investigated allocentric versus egocentric reference frames on the wrist and compared them for induced cognitive load, reaction time and accuracy in a user study. This thesis presents evidence that using an allocentric reference frame drastically lowers cognitive load and slightly lowers reaction time while keeping the same accuracy as an egocentric reference frame, making a strong case for the utilization of allocentric reference frames in tactile bracelets with several tactile actuators

    Tactile Data Entry for Extravehicular Activity

    Get PDF
    In the task-saturated environment of extravehicular activity (EVA), an astronaut's ability to leverage suit-integrated information systems is limited by a lack of options for data entry. In particular, bulky gloves inhibit the ability to interact with standard computing interfaces such as a mouse or keyboard. This paper presents the results of a preliminary investigation into a system that permits the space suit gloves themselves to be used as data entry devices. Hand motion tracking is combined with simple finger gesture recognition to enable use of a virtual keyboard, while tactile feedback provides touch-based context to the graphical user interface (GUI) and positive confirmation of keystroke events. In human subject trials, conducted with twenty participants using a prototype system, participants entered text significantly faster with tactile feedback than without (p = 0.02). The results support incorporation of vibrotactile information in a future system that will enable full touch typing and general mouse interactions using instrumented EVA gloves

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Somatic ABC's: A Theoretical Framework for Designing, Developing and Evaluating the Building Blocks of Touch-Based Information Delivery

    Get PDF
    abstract: Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, in particular, is a promising candidate given that it is our largest sensory organ with impressive spatial and temporal acuity. Although some approaches have been proposed for touch-based information delivery, they are not without limitations including high learning curves, limited applicability and/or limited expression. This is largely due to the lack of a versatile, comprehensive design theory--specifically, a theory that addresses the design of touch-based building blocks for expandable, efficient, rich and robust touch languages that are easy to learn and use. Moreover, beyond design, there is a lack of implementation and evaluation theories for such languages. To overcome these limitations, a unified, theoretical framework, inspired by natural, spoken language, is proposed called Somatic ABC's for Articulating (designing), Building (developing) and Confirming (evaluating) touch-based languages. To evaluate the usefulness of Somatic ABC's, its design, implementation and evaluation theories were applied to create communication languages for two very unique application areas: audio described movies and motor learning. These applications were chosen as they presented opportunities for complementing communication by offloading information, typically conveyed visually and/or aurally, to the skin. For both studies, it was found that Somatic ABC's aided the design, development and evaluation of rich somatic languages with distinct and natural communication units.Dissertation/ThesisPh.D. Computer Science 201

    Toward multimodality: gesture and vibrotactile feedback in natural human computer interaction

    Get PDF
    In the present work, users’ interaction with advanced systems has been investigated in different application domains and with respect to different interfaces. The methods employed were carefully devised to respond to the peculiarities of the interfaces under examination. We could extract a set of recommendations for developers. The first application domain examined regards the home. In particular, we addressed the design of a gestural interface for controlling a lighting system embedded into a piece of furniture in the kitchen. A sample of end users was observed while interacting with the virtual simulation of the interface. Based on the videoanalysis of users’ spontaneous behaviors, we could derive a set of significant interaction trends The second application domain involved the exploration of an urban environment in mobility. In a comparative study, a haptic-audio interface and an audio-visual interface were employed for guiding users towards landmarks and for providing them with information. We showed that the two systems were equally efficient in supporting the users and they were both well- received by them. In a navigational task we compared two tactile displays each embedded in a different wearable device, i.e., a glove and a vest. Despite the differences in the shape and size, both systems successfully directed users to the target. The strengths and the flaws of the two devices were pointed out and commented by users. In a similar context, two devices supported Augmented Reality technology, i.e., a pair of smartglasses and a smartphone, were compared. The experiment allowed us to identify the circumstances favoring the use of smartglasses or the smartphone. Considered altogether, our findings suggest a set of recommendations for developers of advanced systems. First, we outline the importance of properly involving end users for unveiling intuitive interaction modalities with gestural interfaces. We also highlight the importance of providing the user the chance to choose the interaction mode better fitting the contextual characteristics and to adjust the features of every interaction mode. Finally, we outline the potential of wearable devices to support interactions on the move and the importance of finding a proper balance between the amount of information conveyed to the user and the size of the device
    • …
    corecore