2,653 research outputs found

    EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

    Full text link
    Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this paper, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition

    An EEG study on emotional intelligence and advertising message effectiveness

    Get PDF
    Some electroencephalography (EEG) studies have investigated emotional intelligence (EI), but none have examined the relationships between EI and commercial advertising messages and related consumer behaviors. This study combines brain (EEG) techniques with an EI psychometric to explore the brain responses associated with a range of advertisements. A group of 45 participants (23females, 22males) had their EEG recorded while watching a series of advertisements selected from various marketing categories such as community interests, celebrities, food/drink, and social issues. Participants were also categorized as high or low in emotional intelligence (n = 34). The EEG data analysis was centered on rating decision-making in order to measure brain responses associated with advertising information processing for both groups. The findings suggest that participants with high and low emotional intelligence (EI) were attentive to different types of advertising messages. The two EI groups demonstrated preferences for “people” or “object,” related advertising information. This suggests that differences in consumer perception and emotions may suggest why certain advertising material or marketing strategies are effective or not

    A Review on EEG Signals Based Emotion Recognition

    Get PDF
    Emotion recognition has become a very controversial issue in brain-computer interfaces (BCIs). Moreover, numerous studies have been conducted in order to recognize emotions. Also, there are several important definitions and theories about human emotions. In this paper we try to cover important topics related to the field of emotion recognition. We review several studies which are based on analyzing electroencephalogram (EEG) signals as a biological marker in emotion changes. Considering low cost, good time and spatial resolution, EEG has become very common and is widely used in most BCI applications and studies. First, we state some theories and basic definitions related to emotions. Then some important steps of an emotion recognition system like different kinds of biologic measurements (EEG, electrocardiogram [EEG], respiration rate, etc), offline vs online recognition methods, emotion stimulation types and common emotion models are described. Finally, the recent and most important studies are reviewed

    Brain electrical activity discriminant analysis using Reproducing Kernel Hilbert spaces

    Get PDF
    A deep an adequate understanding of the human brain functions has been an objective for interdisciplinar teams of scientists. Different types of technological acquisition methodologies, allow to capture some particular data that is related with brain activity. Commonly, the more used strategies are related with the brain electrical activity, where reflected neuronal interactions are reflected in the scalp and obtained via electrode arrays as time series. The processing of this type of brain electrical activity (BEA) data, poses some challenges that should be addressed carefully due their intrinsic properties. BEA in known to have a nonstationaty behavior and a high degree of variability dependenig of the stimulus or responses that are being adressed..
    corecore