36 research outputs found

    On the cross-lingual transferability of multilingual prototypical models across NLU tasks

    Full text link
    Supervised deep learning-based approaches have been applied to task-oriented dialog and have proven to be effective for limited domain and language applications when a sufficient number of training examples are available. In practice, these approaches suffer from the drawbacks of domain-driven design and under-resourced languages. Domain and language models are supposed to grow and change as the problem space evolves. On one hand, research on transfer learning has demonstrated the cross-lingual ability of multilingual Transformers-based models to learn semantically rich representations. On the other, in addition to the above approaches, meta-learning have enabled the development of task and language learning algorithms capable of far generalization. Through this context, this article proposes to investigate the cross-lingual transferability of using synergistically few-shot learning with prototypical neural networks and multilingual Transformers-based models. Experiments in natural language understanding tasks on MultiATIS++ corpus shows that our approach substantially improves the observed transfer learning performances between the low and the high resource languages. More generally our approach confirms that the meaningful latent space learned in a given language can be can be generalized to unseen and under-resourced ones using meta-learning.Comment: Accepted to the ACL workshop METANLP 202

    A Convolutional Neural Network (CNN) based Pill Image Retrieval System

    Get PDF
    Several works have been done in the area of image retrieval systems, and many are still trying to provide improvements for a better model for retrieving said images. Image segmentation using clustering techniques is one of the most used approaches. There are various clustering methods available, but the non-linear k-means clustering technique is the most used method. In the following research, a model of retrieving images using a non-linear classifier aided with a convolutional neural network is proposed. Both algorithms were exploited and paired in terms of feature extraction and classification. Comprehensive evaluations over a dataset containing over 7,000 pill images of 1,000 pill types obtained from the National Library of Medicine database demonstrate significant success during the data classification using the proposed model

    A Semantic Information Management Approach for Improving Bridge Maintenance based on Advanced Constraint Management

    Get PDF
    Bridge rehabilitation projects are important for transportation infrastructures. This research proposes a novel information management approach based on state-of-the-art deep learning models and ontologies. The approach can automatically extract, integrate, complete, and search for project knowledge buried in unstructured text documents. The approach on the one hand facilitates implementation of modern management approaches, i.e., advanced working packaging to delivery success bridge rehabilitation projects, on the other hand improves information management practices in the construction industry

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Face analysis and deepfake detection

    Get PDF
    This thesis concerns deep-learning-based face-related research topics. We explore how to improve the performance of several face systems when confronting challenging variations. In Chapter 1, we provide an introduction and background information on the theme, and we list the main research questions of this dissertation. In Chapter 2, we provide a synthetic face data generator with fully controlled variations and proposed a detailed experimental comparison of main characteristics that influence face detection performance. The result shows that our synthetic dataset could complement face detectors to become more robust against specific features in the real world. Our analysis also reveals that a variety of data augmentation is necessary to address differences in performance. In Chapter 3, we propose an age estimation method for handling large pose variations for unconstrained face images. A Wasserstein-based GAN model is used to complete the full uv texture presentation. The proposed AgeGAN method simultaneously learns to capture the facial uv texture map and age characteristics.In Chapter 4, we propose a maximum mean discrepancy (MMD) based cross-domain face forgery detection. The center and triplet losses are also incorporated to ensure that the learned features are shared by multiple domains and provide better generalization abilities to unseen deep fake samples. In Chapter 5, we introduce an end-to-end framework to predict ages from face videos. Clustering based transfer learning is used to provide proper prediction for imbalanced datasets
    corecore