149 research outputs found

    Fuzzy ART

    Full text link
    Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Learning, Categorization, Rule Formation, and Prediction by Fuzzy Neural Networks

    Full text link
    National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-91-J-4100, N00014-92-J-4015) Air Force Office of Scientific Research (90-0083, N00014-92-J-4015

    Hybrid Computational Intelligence Models With Symbolic Rule Extraction For Pattern Classification

    Get PDF
    Tesis ini adalah berkenaan dengan pembangunan model kecerdikan berkomputer hibrid bagi menangani masalah pengelasan corak. This thesis is concerned with the development of hybrid Computational Intelligence (CI) models for tackling pattern classification problems

    Lipase Mediated Transesterification Of Waste Cooking Palm Oil For Biodiesel Production : Batch And Continuous Studies [TP359.B46 S623 2008 f rb].

    Get PDF
    Pembangunan strategi baru yang lebih cekap untuk menghasilkan biodiesel adalah perkara yang sangat penting. Ini kerana biodiesel telah diterima di seluruh dunia sebagai bahan bakar alternatif untuk enjin diesel. The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines

    Incremental Cluster Validity Index-Guided Online Learning for Performance and Robustness to Presentation Order

    Get PDF
    In streaming data applications, the incoming samples are processed and discarded, and therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which the samples arrive may heavily affect the performance of incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use case has been cluster quality monitoring; nonetheless, they have been recently integrated in a streaming clustering method. In this context, the work presented, here, introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI module as module B of a topological ART predictive mapping (TopoARTMAP)—thereby being named iCVI-TopoARTMAP—and using iCVI-driven postprocessing heuristics at the end of each learning step. The online iCVI module provides assignments of input samples to clusters at each iteration in accordance to any of the several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by the ART predictive mapping (ARTMAP) models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance and robustness to the presentation order of iCVI-TopoARTMAP were evaluated via experiments with synthetic and real-world datasets

    The applications of neural network in mapping, modeling and change detection using remotely sensed data

    Full text link
    Thesis (Ph.D.)--Boston UniversityAdvances in remote sensing and associated capabilities are expected to proceed in a number of ways in the era of the Earth Observing System (EOS). More complex multitemporal, multi-source data sets will become available, requiring more sophisticated analysis methods. This research explores the applications of artificial neural networks in land-cover mapping, forward and inverse canopy modeling and change detection. For land-cover mapping a multi-layer feed-forward neural network produced 89% classification accuracy using a single band of multi-angle data from the Advanced Solidstate Array Spectroradiometer (ASAS). The principal results include the following: directional radiance measurements contain much useful information for discrimination among land-cover classes; the combination of multi-angle and multi-spectral data improves the overall classification accuracy compared with a single multi-angle band; and neural networks can successfully learn class discrimination from directional data or multi-domain data. Forward canopy modeling shows that a multi-layer feed-forward neural network is able to predict the bidirectional reflectance distribution function (BRDF) of different canopy sites with 90% accuracy. Analysis of the signal captured by the network indicates that the canopy structural parameters, and illumination and viewing geometry, are essential for predicting the BRDF of vegetated surfaces. The inverse neural network model shows that the R2 between the network-predicted canopy parameters and the actual canopy parameters is 0.85 for canopy density and 0.75 for both the crown shape and the height parameters. [TRUNCATED

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree

    Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning

    Get PDF
    A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Investigation Of A Fuzzy-Neural Network Application In Classification Of Soils Using Ground-Penetrating Radar Imagery

    Get PDF
    Errors associated with visual inspection and interpretations of radargrams often inhibit the intensive surveying of widespread areas using ground-penetrating radar (GPR). To automate the interpretive process, this article presents an application of a fuzzy-neural network (F-NN) classifier for unsupervised clustering and classification of soil profiles using GPR imagery. The classifier clusters and classifies soil profile strips along a traverse based on common pattern similarities that can relate to physical features of the soil (e.g., number of horizons; depth, texture, and structure of the horizons; and relative arrangement of the horizons, etc.). This article illustrates this classification procedure by its application on GPR data, both simulated and actual. Results show that the procedure is able to classify the profile into zones that corresponded with the classifications obtained by visual inspection and interpretation of radar grams. Application of F-NN to a study site in southwest Tennessee gave soil groupings that are in close correspondence with the groupings obtained in a previous study, which used the traditional methods of complete soil morphological, chemical, and physical characterization. At a crossover value of 3.0, the F-NN soil grouping boundary locations fall within a range of ±2.7 m from the soil groupings determined by the traditional methods. These results indicate that F-NN can supply accurate real-time soil profile clustering and classification during field surveys
    corecore