955 research outputs found

    Constructive inversion of energy trajectories in quantum mechanics

    Get PDF
    We suppose that the ground-state eigenvalue E = F(v) of the Schroedinger Hamiltonian H = -\Delta + vf(x) in one dimension is known for all values of the coupling v > 0. The potential shape f(x) is assumed to be symmetric, bounded below, and monotone increasing for x > 0. A fast algorithm is devised which allows the potential shape f(x) to be reconstructed from the energy trajectory F(v). Three examples are discussed in detail: a shifted power-potential, the exponential potential, and the sech-squared potential are each reconstructed from their known exact energy trajectories.Comment: 16 pages in plain TeX with 5 ps figure

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure

    Functional co-monotony of processes with applications to peacocks and barrier options

    Get PDF
    We show that several general classes of stochastic processes satisfy a functional co-monotony principle, including processes with independent increments, Brownian diffusions, Liouville processes. As a first application, we recover some recent results about peacock processes obtained by Hirsch et al. which were themselves motivated by a former work of Carr et al. about the sensitivity of Asian Call options with respect to their volatility and residual maturity (seniority). We also derive semi-universal bounds for various barrier options.Comment: 27 page

    Prabhakar-like fractional viscoelasticity

    Full text link
    The aim of this paper is to present a linear viscoelastic model based on Prabhakar fractional operators. In particular, we propose a modification of the classical fractional Maxwell model, in which we replace the Caputo derivative with the Prabhakar one. Furthermore, we also discuss how to recover a formal equivalence between the new model and the known classical models of linear viscoelasticity by means of a suitable choice of the parameters in the Prabhakar derivative. Moreover, we also underline an interesting connection between the theory of Prabhakar fractional integrals and the recently introduced Caputo-Fabrizio differential operator.Comment: 9 page

    Estimation of a kk-monotone density: limit distribution theory and the spline connection

    Full text link
    We study the asymptotic behavior of the Maximum Likelihood and Least Squares Estimators of a kk-monotone density g0g_0 at a fixed point x0x_0 when k>2k>2. We find that the jjth derivative of the estimators at x0x_0 converges at the rate nāˆ’(kāˆ’j)/(2k+1)n^{-(k-j)/(2k+1)} for j=0,...,kāˆ’1j=0,...,k-1. The limiting distribution depends on an almost surely uniquely defined stochastic process HkH_k that stays above (below) the kk-fold integral of Brownian motion plus a deterministic drift when kk is even (odd). Both the MLE and LSE are known to be splines of degree kāˆ’1k-1 with simple knots. Establishing the order of the random gap Ļ„n+āˆ’Ļ„nāˆ’\tau_n^+-\tau_n^-, where Ļ„nĀ±\tau_n^{\pm} denote two successive knots, is a key ingredient of the proof of the main results. We show that this ``gap problem'' can be solved if a conjecture about the upper bound on the error in a particular Hermite interpolation via odd-degree splines holds.Comment: Published in at http://dx.doi.org/10.1214/009053607000000262 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generalizations of Kochen and Specker's Theorem and the Effectiveness of Gleason's Theorem

    Get PDF
    Kochen and Specker's theorem can be seen as a consequence of Gleason's theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason's theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated.Comment: 14 pages, 6 figures, read at the Robert Clifton memorial conferenc
    • ā€¦
    corecore