2,936 research outputs found

    Universal Indexes for Highly Repetitive Document Collections

    Get PDF
    Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Processing Posting Lists Using OpenCL

    Get PDF
    One of the main requirements of internet search engines is the ability to retrieve relevant results with faster response times. Yioop is an open source search engine designed and developed in PHP by Dr. Chris Pollett. The goal of this project is to explore the possibilities of enhancing the performance of Yioop by substituting resource-intensive existing PHP functions with C based native PHP extensions and the parallel data processing technology OpenCL. OpenCL leverages the Graphical Processing Unit (GPU) of a computer system for performance improvements. Some of the critical functions in search engines are resource-intensive in terms of processing power, memory, and I/O usage. The processing times vary based on the complexity and magnitude of data involved. This project involves different phases such as identifying critical resource intensive functions, initially replacing such methods with PHP Extensions, and eventually experimenting with OpenCL code. We also ran performance tests to measure the reduction in processing times. From our results, we concluded that PHP Extensions and OpenCL processing resulted in performance improvements

    Re-Pair Compression of Inverted Lists

    Full text link
    Compression of inverted lists with methods that support fast intersection operations is an active research topic. Most compression schemes rely on encoding differences between consecutive positions with techniques that favor small numbers. In this paper we explore a completely different alternative: We use Re-Pair compression of those differences. While Re-Pair by itself offers fast decompression at arbitrary positions in main and secondary memory, we introduce variants that in addition speed up the operations required for inverted list intersection. We compare the resulting data structures with several recent proposals under various list intersection algorithms, to conclude that our Re-Pair variants offer an interesting time/space tradeoff for this problem, yet further improvements are required for it to improve upon the state of the art

    On inverted index compression for search engine efficiency

    Get PDF
    Efficient access to the inverted index data structure is a key aspect for a search engine to achieve fast response times to users’ queries . While the performance of an information retrieval (IR) system can be enhanced through the compression of its posting lists, there is little recent work in the literature that thoroughly compares and analyses the performance of modern integer compression schemes across different types of posting information (document ids, frequencies, positions). In this paper, we experiment with different modern integer compression algorithms, integrating these into a modern IR system. Through comprehensive experiments conducted on two large, widely used document corpora and large query sets, our results show the benefit of compression for different types of posting information to the space- and time-efficiency of the search engine. Overall, we find that the simple Frame of Reference compression scheme results in the best query response times for all types of posting information. Moreover, we observe that the frequency and position posting information in Web corpora that have large volumes of anchor text are more challenging to compress, yet compression is beneficial in reducing average query response times

    Decoding billions of integers per second through vectorization

    Get PDF
    In many important applications -- such as search engines and relational database systems -- data is stored in the form of arrays of integers. Encoding and, most importantly, decoding of these arrays consumes considerable CPU time. Therefore, substantial effort has been made to reduce costs associated with compression and decompression. In particular, researchers have exploited the superscalar nature of modern processors and SIMD instructions. Nevertheless, we introduce a novel vectorized scheme called SIMD-BP128 that improves over previously proposed vectorized approaches. It is nearly twice as fast as the previously fastest schemes on desktop processors (varint-G8IU and PFOR). At the same time, SIMD-BP128 saves up to 2 bits per integer. For even better compression, we propose another new vectorized scheme (SIMD-FastPFOR) that has a compression ratio within 10% of a state-of-the-art scheme (Simple-8b) while being two times faster during decoding.Comment: For software, see https://github.com/lemire/FastPFor, For data, see http://boytsov.info/datasets/clueweb09gap

    A General SIMD-based Approach to Accelerating Compression Algorithms

    Get PDF
    Compression algorithms are important for data oriented tasks, especially in the era of Big Data. Modern processors equipped with powerful SIMD instruction sets, provide us an opportunity for achieving better compression performance. Previous research has shown that SIMD-based optimizations can multiply decoding speeds. Following these pioneering studies, we propose a general approach to accelerate compression algorithms. By instantiating the approach, we have developed several novel integer compression algorithms, called Group-Simple, Group-Scheme, Group-AFOR, and Group-PFD, and implemented their corresponding vectorized versions. We evaluate the proposed algorithms on two public TREC datasets, a Wikipedia dataset and a Twitter dataset. With competitive compression ratios and encoding speeds, our SIMD-based algorithms outperform state-of-the-art non-vectorized algorithms with respect to decoding speeds

    Inverted index compression based on term and document identifier reassignment

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 43-46.Compression of inverted indexes received great attention in recent years. An inverted index consists of lists of document identifiers, also referred as posting lists, for each term. Compressing an inverted index reduces the size of the index, which also improves the query performance due to the reduction on disk access times. In recent studies, it is shown that reassigning document identifiers has great effect in compression of an inverted index. In this work, we propose a novel technique that reassigns both term and document identifiers of an inverted index by transforming the matrix representation of the index into a block-diagonal form, which improves the compression ratio dramatically. We adapted row-net hypergraph-partitioning model for the transformation into block-diagonal form, which improves the compression ratio by as much as 50%. To the best of our knowledge, this method performs more effectively than previous inverted index compression techniques.Baykan, İzzet ÇağrıM.S

    Fast dictionary-based compression for inverted indexes

    Get PDF
    Dictionary-based compression schemes provide fast decoding operation, typically at the expense of reduced compression effectiveness compared to statistical or probability-based approaches. In this work, we apply dictionary-based techniques to the compression of inverted lists, showing that the high degree of regularity that these integer sequences exhibit is a good match for certain types of dictionary methods, and that an important new trade-off balance between compression effectiveness and compression efficiency can be achieved. Our observations are supported by experiments using the document-level inverted index data for two large text collections, and a wide range of other index compression implementations as reference points. Those experiments demonstrate that the gap between efficiency and effectiveness can be substantially narrowed
    corecore