19,937 research outputs found

    Off-the-grid model based deep learning (O-MODL)

    Full text link
    We introduce a model based off-the-grid image reconstruction algorithm using deep learned priors. The main difference of the proposed scheme with current deep learning strategies is the learning of non-linear annihilation relations in Fourier space. We rely on a model based framework, which allows us to use a significantly smaller deep network, compared to direct approaches that also learn how to invert the forward model. Preliminary comparisons against image domain MoDL approach demonstrates the potential of the off-the-grid formulation. The main benefit of the proposed scheme compared to structured low-rank methods is the quite significant reduction in computational complexity.Comment: ISBI 201

    Deep, Complex, Invertible Networks for Inversion of Transmission Effects in Multimode Optical Fibres

    Get PDF
    We use complex-weighted, deep networks to invert the effects of multimode optical fibre distortion of a coherent input image. We generated experimental data based on collections of optical fibre responses to greyscale input images generated with coherent light, by measuring only image amplitude (not amplitude and phase as is typical) at the output of \SI{1}{\metre} and \SI{10}{\metre} long, \SI{105}{\micro\metre} diameter multimode fibre. This data is made available as the {\it Optical fibre inverse problem} Benchmark collection. The experimental data is used to train complex-weighted models with a range of regularisation approaches. A {\it unitary regularisation} approach for complex-weighted networks is proposed which performs well in robustly inverting the fibre transmission matrix, which fits well with the physical theory. A key benefit of the unitary constraint is that it allows us to learn a forward unitary model and analytically invert it to solve the inverse problem. We demonstrate this approach, and show how it can improve performance by incorporating knowledge of the phase shift induced by the spatial light modulator

    Learning Optimal Data Augmentation Policies via Bayesian Optimization for Image Classification Tasks

    Full text link
    In recent years, deep learning has achieved remarkable achievements in many fields, including computer vision, natural language processing, speech recognition and others. Adequate training data is the key to ensure the effectiveness of the deep models. However, obtaining valid data requires a lot of time and labor resources. Data augmentation (DA) is an effective alternative approach, which can generate new labeled data based on existing data using label-preserving transformations. Although we can benefit a lot from DA, designing appropriate DA policies requires a lot of expert experience and time consumption, and the evaluation of searching the optimal policies is costly. So we raise a new question in this paper: how to achieve automated data augmentation at as low cost as possible? We propose a method named BO-Aug for automating the process by finding the optimal DA policies using the Bayesian optimization approach. Our method can find the optimal policies at a relatively low search cost, and the searched policies based on a specific dataset are transferable across different neural network architectures or even different datasets. We validate the BO-Aug on three widely used image classification datasets, including CIFAR-10, CIFAR-100 and SVHN. Experimental results show that the proposed method can achieve state-of-the-art or near advanced classification accuracy. Code to reproduce our experiments is available at https://github.com/zhangxiaozao/BO-Aug

    Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules

    Full text link
    A key challenge in leveraging data augmentation for neural network training is choosing an effective augmentation policy from a large search space of candidate operations. Properly chosen augmentation policies can lead to significant generalization improvements; however, state-of-the-art approaches such as AutoAugment are computationally infeasible to run for the ordinary user. In this paper, we introduce a new data augmentation algorithm, Population Based Augmentation (PBA), which generates nonstationary augmentation policy schedules instead of a fixed augmentation policy. We show that PBA can match the performance of AutoAugment on CIFAR-10, CIFAR-100, and SVHN, with three orders of magnitude less overall compute. On CIFAR-10 we achieve a mean test error of 1.46%, which is a slight improvement upon the current state-of-the-art. The code for PBA is open source and is available at https://github.com/arcelien/pba.Comment: ICML 201

    In-Domain GAN Inversion for Real Image Editing

    Full text link
    Recent work has shown that a variety of semantics emerge in the latent space of Generative Adversarial Networks (GANs) when being trained to synthesize images. However, it is difficult to use these learned semantics for real image editing. A common practice of feeding a real image to a trained GAN generator is to invert it back to a latent code. However, existing inversion methods typically focus on reconstructing the target image by pixel values yet fail to land the inverted code in the semantic domain of the original latent space. As a result, the reconstructed image cannot well support semantic editing through varying the inverted code. To solve this problem, we propose an in-domain GAN inversion approach, which not only faithfully reconstructs the input image but also ensures the inverted code to be semantically meaningful for editing. We first learn a novel domain-guided encoder to project a given image to the native latent space of GANs. We then propose domain-regularized optimization by involving the encoder as a regularizer to fine-tune the code produced by the encoder and better recover the target image. Extensive experiments suggest that our inversion method achieves satisfying real image reconstruction and more importantly facilitates various image editing tasks, significantly outperforming start-of-the-arts.Comment: ECCV 2020 camera-read

    Understanding Negations in Information Processing: Learning from Replicating Human Behavior

    Full text link
    Information systems experience an ever-growing volume of unstructured data, particularly in the form of textual materials. This represents a rich source of information from which one can create value for people, organizations and businesses. For instance, recommender systems can benefit from automatically understanding preferences based on user reviews or social media. However, it is difficult for computer programs to correctly infer meaning from narrative content. One major challenge is negations that invert the interpretation of words and sentences. As a remedy, this paper proposes a novel learning strategy to detect negations: we apply reinforcement learning to find a policy that replicates the human perception of negations based on an exogenous response, such as a user rating for reviews. Our method yields several benefits, as it eliminates the former need for expensive and subjective manual labeling in an intermediate stage. Moreover, the inferred policy can be used to derive statistical inferences and implications regarding how humans process and act on negations.Comment: 39 page

    Generalization in anti-causal learning

    Full text link
    The ability to learn and act in novel situations is still a prerogative of animate intelligence, as current machine learning methods mostly fail when moving beyond the standard i.i.d. setting. What is the reason for this discrepancy? Most machine learning tasks are anti-causal, i.e., we infer causes (labels) from effects (observations). Typically, in supervised learning we build systems that try to directly invert causal mechanisms. Instead, in this paper we argue that strong generalization capabilities crucially hinge on searching and validating meaningful hypotheses, requiring access to a causal model. In such a framework, we want to find a cause that leads to the observed effect. Anti-causal models are used to drive this search, but a causal model is required for validation. We investigate the fundamental differences between causal and anti-causal tasks, discuss implications for topics ranging from adversarial attacks to disentangling factors of variation, and provide extensive evidence from the literature to substantiate our view. We advocate for incorporating causal models in supervised learning to shift the paradigm from inference only, to search and validation.Comment: A shorter version of this paper appeared at the workshop on `Critiquing and correcting trends in machine learning` at NeurIPS 201

    A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-Learning

    Full text link
    We follow the idea of formulating vision as inverse graphics and propose a new type of element for this task, a neural-symbolic capsule. It is capable of de-rendering a scene into semantic information feed-forward, as well as rendering it feed-backward. An initial set of capsules for graphical primitives is obtained from a generative grammar and connected into a full capsule network. Lifelong meta-learning continuously improves this network's detection capabilities by adding capsules for new and more complex objects it detects in a scene using few-shot learning. Preliminary results demonstrate the potential of our novel approach.Comment: German Conference on Pattern Recognition (GCPR) 201

    Attitudes towards the Gaelic language

    Get PDF

    Unrolled Optimization with Deep Priors

    Full text link
    A broad class of problems at the core of computational imaging, sensing, and low-level computer vision reduces to the inverse problem of extracting latent images that follow a prior distribution, from measurements taken under a known physical image formation model. Traditionally, hand-crafted priors along with iterative optimization methods have been used to solve such problems. In this paper we present unrolled optimization with deep priors, a principled framework for infusing knowledge of the image formation into deep networks that solve inverse problems in imaging, inspired by classical iterative methods. We show that instances of the framework outperform the state-of-the-art by a substantial margin for a wide variety of imaging problems, such as denoising, deblurring, and compressed sensing magnetic resonance imaging (MRI). Moreover, we conduct experiments that explain how the framework is best used and why it outperforms previous methods.Comment: First two authors contributed equall
    corecore