5,556 research outputs found

    Parameter estimation in kinetic reaction models using nonlinear observers facilitated by model extensions

    Get PDF
    An essential part of mathematical modelling is the accurate and reliable estimation of model parameters. In biology, the required parameters are particularly difficult to measure due to either shortcomings of the measurement technology or a lack of direct measurements. In both cases, parameters must be estimated from indirect measurements, usually in the form of time-series data. Here, we present a novel approach for parameter estimation that is particularly tailored to biological models consisting of nonlinear ordinary differential equations. By assuming specific types of nonlinearities common in biology, resulting from generalised mass action, Hill kinetics and products thereof, we can take a three step approach: (1) transform the identification into an observer problem using a suitable model extension that decouples the estimation of non-measured states from the parameters; (2) reconstruct all extended states using suitable nonlinear observers; (3) estimate the parameters using the reconstructed states. The actual estimation of the parameters is based on the intrinsic dependencies of the extended states arising from the definitions of the extended variables. An important advantage of the proposed method is that it allows to identify suitable measurements and/or model structures for which the parameters can be estimated. Furthermore, the proposed identification approach is generally applicable to models of metabolic networks, signal transduction and gene regulation

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201

    Nonlinear Tracking Control Using a Robust Differential-Algebraic Approach.

    Get PDF
    This dissertation presents the development and application of an inherently robust nonlinear trajectory tracking control design methodology which is based on linearization along a nominal trajectory. The problem of trajectory tracking is reduced to two separate control problems. The first is to compute the nominal control signal that is needed to place a nonlinear system on a desired trajectory. The second problem is one of stabilizing the nominal trajectory. The primary development of this work is the development of practical methods for designing error regulators for Linear Time Varying systems, which allows for the application of trajectory linearization to time varying trajectories for nonlinear systems. This development is based on a new Differential Algebraic Spectral Theory. The problem of robust tracking for nonlinear systems with parametric uncertainty is studied in relation to the Linear Time Varying spectrum. The control method presented herein constitutes a rather general control strategy for nonlinear dynamic systems. Design and simulation case studies for some challenging nonlinear tracking problems are considered. These control problems include: two academic problems, a pitch autopilot design for a skid-to-turn missile, a two link robot controller, a four degree of freedom roll-yaw autopilot, and a complete six degree of freedom Bank-to-turn planar missile autopilot. The simulation results for these designs show significant improvements in performance and robustness compared to other current control strategies

    On the computation of π\pi-flat outputs for differential-delay systems

    Full text link
    We introduce a new definition of π\pi-flatness for linear differential delay systems with time-varying coefficients. We characterize π\pi- and π\pi-0-flat outputs and provide an algorithm to efficiently compute such outputs. We present an academic example of motion planning to discuss the pertinence of the approach.Comment: Minor corrections to fit with the journal versio

    Regelungstheorie

    Get PDF
    The workshop “Regelungstheorie” (control theory) covered a broad variety of topics that were either concerned with fundamental mathematical aspects of control or with its strong impact in various fields of engineering

    Advanced Computational-Effective Control and Observation Schemes for Constrained Nonlinear Systems

    Get PDF
    Constraints are one of the most common challenges that must be faced in control systems design. The sources of constraints in engineering applications are several, ranging from actuator saturations to safety restrictions, from imposed operating conditions to trajectory limitations. Their presence cannot be avoided, and their importance grows even more in high performance or hazardous applications. As a consequence, a common strategy to mitigate their negative effect is to oversize the components. This conservative choice could be largely avoided if the controller was designed taking all limitations into account. Similarly, neglecting the constraints in system estimation often leads to suboptimal solutions, which in turn may negatively affect the control effectiveness. Therefore, with the idea of taking a step further towards reliable and sustainable engineering solutions, based on more conscious use of the plants' dynamics, we decide to address in this thesis two fundamental challenges related to constrained control and observation. In the first part of this work, we consider the control of uncertain nonlinear systems with input and state constraints, for which a general approach remains elusive. In this context, we propose a novel closed-form solution based on Explicit Reference Governors and Barrier Lyapunov Functions. Notably, it is shown that adaptive strategies can be embedded in the constrained controller design, thus handling parametric uncertainties that often hinder the resulting performance of constraint-aware techniques. The second part of the thesis deals with the global observation of dynamical systems subject to topological constraints, such as those evolving on Lie groups or homogeneous spaces. Here, general observability analysis tools are overviewed, and the problem of sensorless control of permanent magnets electrical machines is presented as a case of study. Through simulation and experimental results, we demonstrate that the proposed formalism leads to high control performance and simple implementation in embedded digital controllers
    corecore