1,560 research outputs found

    Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling

    Get PDF
    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%

    Harmonization of remote sensing land surface products : correction of clear-sky bias and characterization of directional effects

    Get PDF
    Tese de doutoramento, CiĂȘncias GeofĂ­sicas e da Geoinformação (Deteção Remota), Universidade de Lisboa, Faculdade de CiĂȘncias, 2018Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean energy balance at the surface. LST is an important climatological variable and a diagnostic parameter of land surface conditions, since it is the primary variable determining the upward thermal radiation and one of the main controllers of sensible and latent heat fluxes between the surface and the atmosphere. The reliable and long-term estimation of LST is therefore highly relevant for a wide range of applications, including, amongst others: (i) land surface model validation and monitoring; (ii) data assimilation; (iii) hydrological applications; and (iv) climate monitoring. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, i.e., within the 8-13 micrometer range. Beside the relatively weak atmospheric attenuation under clear sky conditions, this band includes the peak of the Earth’s spectral radiance, considering surface temperature of the order of 300K (leading to maximum emission at approximately 9.6 micrometer, according to Wien’s Displacement Law). The estimation of LST from remote sensing instruments operating in the IR is being routinely performed for nearly 3 decades. Nevertheless, there is still a long list of open issues, some of them to be addressed in this PhD thesis. First, the viewing position of the different remote sensing platforms may lead to variability of the retrieved surface temperature that depends on the surface heterogeneity of the pixel – dominant land cover, orography. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should correspond to the ensemble directional radiometric temperature of all surface elements within the FOV. In this thesis, a geometric model is presented that allows the upscaling of in situ measurements to the any viewing configuration. This model allowed generating a synthetic database of directional LST that was used consistently to evaluate different parametric models of directional LST. Ultimately, a methodology is proposed that allows the operational use of such parametric models to correct angular effects on the retrieved LST. Second, the use of infrared data limits the retrieval of LST to clear sky conditions, since clouds “close” the atmospheric window. This effect introduces a clear-sky bias in IR LST datasets that is difficult to quantify since it varies in space and time. In addition, the cloud clearing requirement severely limits the space-time sampling of IR measurements. Passive microwave (MW) measurements are much less affected by clouds than IR observations. LST estimates can in principle be derived from MW measurements, regardless of the cloud conditions. However, retrieving LST from MW and matching those estimations with IR-derived values is challenging and there have been only a few attempts so far. In this thesis, a methodology is presented to retrieve LST from passive MW observations. The MW LST dataset is examined comprehensively against in situ measurements and multiple IR LST products. Finally, the MW LST data is used to assess the spatial-temporal patterns of the clear-sky bias at global scale.Fundação para a CiĂȘncia e a Tecnologia, SFRH/BD/9646

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    DĂ©veloppement d’un systĂšme d’assimilation de mesures satellites micro-ondes passives dans un modĂšle de neige pour la prĂ©vision hydrologique au QuĂ©bec

    Get PDF
    Dans le contexte quĂ©bĂ©cois (Est du Canada), une bonne gestion de la ressource en eau est devenue un enjeu Ă©conomique majeur et permet Ă©galement d’éviter d’importantes catastrophes naturelles lors des crues printaniĂšres. La plus grande incertitude des modĂšles de prĂ©vision hydrologique rĂ©sulte de la mĂ©connaissance de la quantitĂ© de neige au sol accumulĂ©e durant l’hiver. Pour optimiser la gestion de ses barrages hydroĂ©lectriques, l'entreprise Hydro-QuĂ©bec veut pouvoir mieux quantifier et anticiper l'apport en eau que reprĂ©sentera la fonte des neiges au printemps. Cet apport est estimĂ© Ă  partir de l’équivalent en eau de la neige (‘ÉEN’, ou Snow Water Equivalent, ‘SWE’) extrapolĂ© sur l’ensemble d’un territoire. Cette Ă©tude se concentre sur la zone subarctique et borĂ©ale du QuĂ©bec (58° - 45°N) incluant les bassins hydrographiques du complexe de la Baie James et du sud du QuĂ©bec. Ces territoires reprĂ©sentent des rĂ©gions immenses et hĂ©tĂ©rogĂšnes difficiles d’accĂšs. Le faible nombre de stations mĂ©tĂ©orologiques permanentes et de relevĂ©s nivomĂ©triques entrainent de fortes incertitudes dans l’extrapolation de l’équivalent en eau de la neige, que ce soit Ă  partir de mesures au sol ou de modĂšles de neige pilotĂ©s par des forçages mĂ©tĂ©orologiques. La couverture quasi - quotidienne et globale des observations satellitaires est donc une source d’information au potentiel certain, mais encore peu utilisĂ©e pour ajuster les estimations de l’ÉEN dans les modĂšles hydrologiques. Utilisant les observations satellitaires micro-ondes passives (MOP) et des mesures de hauteurs de neige au sol pour ajuster les cartes de neige interpolĂ©es, le produit ÉEN GlobSnow2 est actuellement considĂ©rĂ© comme un des plus performants Ă  l’échelle globale. En comparant ce produit Ă  une sĂ©rie temporelle de 30 ans de donnĂ©es au sol sur l’Est du Canada (1980 – 2009, avec un total de 38 990 mesures d’ÉEN), nous avons montrĂ© que sa prĂ©cision n'Ă©tait pas adaptĂ©e pour les besoins d'Hydro-QuĂ©bec, avec une erreur quadratique moyenne (RMSE) relative de l'ordre de 36%. Une partie des incertitudes provient de la non reprĂ©sentativitĂ© des mesures de hauteur de neige au sol. Ce travail de thĂšse s'est donc concentrĂ© sur l'amĂ©lioration de la prĂ©diction du couvert nival au QuĂ©bec par l’assimilation des observations satellitaires MOP sans utilisation de relevĂ©s au sol. Les observations, dĂ©crites comme des tempĂ©ratures de brillance (TB), sont fournies par les radiomĂštres AMSR-2 (Advanced Microwave Scanning Radiometer – 2) embarquĂ©s sur le satellite Jaxa (10 x 10 km2). L’approche dĂ©veloppĂ©e propose de coupler un modĂšle de neige (Crocus de MĂ©tĂ©o-France) avec un modĂšle de transfert radiatif (DMRT-ML du LGGE, Grenoble) pour simuler l’émission du manteau neigeux modĂ©lisĂ©. Des modĂšles de transfert radiatifs de vĂ©gĂ©tation, de sol et d’atmosphĂšre sont ajoutĂ©s et calibrĂ©s pour reprĂ©senter le signal MOP au niveau des capteurs satellitaires. Les observations MOP d’AMSR-2 sont alors assimilĂ©es en rĂ©ajustant directement les forçages atmosphĂ©riques pilotant le modĂšle de neige. Ces forçages sont dĂ©rivĂ©s du modĂšle de prĂ©vision atmosphĂ©rique canadien GEM Ă  10 km de rĂ©solution spatiale. Le systĂšme d’assimilation implĂ©mentĂ© est un filtre particulaire par rĂ©Ă©chantillonnage d’importance. La chaĂźne de modĂšles a Ă©tĂ© calibrĂ©e et validĂ©e avec des mesures au sol de radiomĂ©trie micro-onde et des relevĂ©s continus d’ÉEN et de hauteurs de neige. L’assimilation des TB montre d'excellents rĂ©sultats avec des observations synthĂ©tiques simulĂ©es, amĂ©liorant la RMSE sur l’ÉEN de 82% comparĂ© aux simulations d’ÉEN sans assimilation. Les experiences prĂ©liminaires de l’assimilation des observations satellitaires d’AMSR-2 en 11, 19 et 37 GHz (verticale polarization) montrent une amĂ©lioration significative des biais sur les ÉEN simulĂ©s sur un important jeu de donnĂ©es ponctuelles (12 stations de mesures d’ÉEN continues sur 4 annĂ©es). La moyenne des biais inversĂ©s des valeurs d’ÉEN moyens et maximums sont rĂ©duits respectivement de 71 % et 32 % par rapport aux simulations d’ÉEN sans assimilation. Avec l’assimilation des observations d’AMSR-2 et pour les sites avec moins de 75 % de couverts forestiers, le pourcentage d'erreur relative sur l’ÉEN par rapport aux observations est de 15 % (contre 20 % sans assimilation), soit une prĂ©cision significativement amĂ©liorĂ©e pour des applications hydrologiques. Ce travail ouvre de nouvelles perspectives trĂšs prometteuses pour la cartographie d’ÉEN Ă  des fins hydrologiques sur une base journaliĂšre

    Theoretical Modeling and Analysis of L- and P-band Radar Backscatter Sensitivity to Soil Active Layer Dielectric Variations

    Get PDF
    Freeze-thaw (FT) and moisture dynamics within the soil active layer are critical elements of boreal, arctic and alpine ecosystems, and environmental change assessments. We evaluated the potential for detecting dielectric changes within different soil layers using combined L- and P-band radar remote sensing as a prerequisite for detecting FT and moisture profile changes within the soil active layer. A two-layer scattering model was developed and validated for simulating radar responses from vertically inhomogeneous soil. The model simulations indicated that inhomogeneity in the soil dielectric profile contributes to both L- and P-band backscatter, but with greater P-band sensitivity at depth. The difference in L- and P-band responses to soil dielectric profile inhomogeneity appears suitable for detecting associated changes in soil active layer conditions. Additional evaluation using collocated airborne radar (AIRSAR) observations and in situ soil moisture measurements over alpine tundra indicates that combined L- and P-band SAR observations are sensitive to soil dielectric profile heterogeneity associated with variations in soil moisture and FT conditions
    • 

    corecore