11,281 research outputs found

    Inversion of Cycle Index Sum Relations for 2- and 3-Connected Graphs

    Get PDF
    AbstractAlgebraic inversion of cycle index sum relations is employed to derive new algorithms for counting unlabeled 2-connected graphs, homeomorphically irreducible 2-connected graphs, and 3-connected graphs. The new algorithms are significantly more efficient than earlier ones, both asymptotically and for modest values of the order. Tables of computed results are included

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    Coxeter-Knuth graphs and a signed Little map for type B reduced words

    Full text link
    We define an analog of David Little's algorithm for reduced words in type B, and investigate its main properties. In particular, we show that our algorithm preserves the recording tableau of Kra\'{s}kiewicz insertion, and that it provides a bijective realization of the Type B transition equations in Schubert calculus. Many other aspects of type A theory carry over to this new setting. Our primary tool is a shifted version of the dual equivalence graphs defined by Assaf and further developed by Roberts. We provide an axiomatic characterization of shifted dual equivalence graphs, and use them to prove a structure theorem for the graph of Type B Coxeter-Knuth relations.Comment: 41 pages, 10 figures, many improvements from version 1, substantively the same as the version in Electronic Journal of Combinatorics, Vol 21, Issue

    Number of cycles in the graph of 312-avoiding permutations

    Get PDF
    The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols. That is, for every permutation π=π1π2...πn+1\pi = \pi_{1} \pi_{2} ... \pi_{n+1} there is a directed edge from the standardization of π1π2...πn\pi_{1} \pi_{2} ... \pi_{n} to the standardization of π2π3...πn+1\pi_{2} \pi_{3} ... \pi_{n+1}. We give a formula for the number of cycles of length dd in the subgraph of overlapping 312-avoiding permutations. Using this we also give a refinement of the enumeration of 312-avoiding affine permutations and point out some open problems on this graph, which so far has been little studied.Comment: To appear in the Journal of Combinatorial Theory - Series

    Band Connectivity for Topological Quantum Chemistry: Band Structures As A Graph Theory Problem

    Full text link
    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature 547, 298 (2017)], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local "k-dot-p" band structures across the Brillouin zone in terms of graph theory. In the current manuscript we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph-theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.Comment: 19 pages. Companion paper to arXiv:1703.02050 and arXiv:1706.08529 v2: Accepted version, minor typos corrected and references added. Now 19+epsilon page

    Bruhat order, smooth Schubert varieties, and hyperplane arrangements

    Get PDF
    The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincare polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit combinatorial formula for the Poincare polynomial. Our main technical tools are chordal graphs and perfect elimination orderings.Comment: 14 pages, 2 figure
    corecore