2,653 research outputs found

    Inversion of Airborne Contaminants in a Regional Model

    Get PDF
    We are interested in a DDDAS problem of localization of airborne contaminant releases in regional atmospheric transport models from sparse observations. Given measurements of the contaminant over an observation window at a small number of points in space, and a velocity field as predicted for example by a mesoscopic weather model, we seek an estimate of the state of the contaminant at the begining of the observation interval that minimizes the least squares misfit between measured and predicted contaminant field, subject to the convection-diffusion equation for the contaminant. Once the initial conditions are estimated by solution of the inverse problem, we issue predictions of the evolution of the contaminant, the observation window is advanced in time, and the process repeated to issue a new prediction, in the style of 4D-Var. We design an appropriate numerical strategy that exploits the spectral structure of the inverse operator, and leads to efficient and accurate resolution of the inverse problem. Numerical experiments verify that high resolution inversion can be carried out rapidly for a well-resolved terrain model of the greater Los Angeles area

    Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion : a field-scale multiphysics approach and parameter evaluation

    Get PDF
    Acknowledgments This research was primarily based on research grant‐aided by the Irish Department of Communications, Energy and Natural Resources under the National Geoscience Programme 2007–2013. It also benefited from complementary funding from the Scottish Alliance for Geoscience, Environment and Society (SAGES). We acknowledge the contribution in data acquisition of the MSc students in Environmental Engineering at Queen's University Belfast, the landowner for access to the inland fields and the Department of Geography, Archaeology and Paleoecology at QUB for provision of the tidal model of Belfast Lough. The data used are listed in the references, tables, and figures and are available from the corresponding author upon demand. We acknowledge the constructive comments by the Associate Editor and three reviewers, which helped in improving the final manuscript.Peer reviewedPublisher PD

    Mapping aerial metal deposition in metropolitan areas from tree bark : a case study in Sheffield, England

    Get PDF
    We investigated the use of metals accumulated on tree bark for mapping their deposition across metropolitan Sheffield by sampling 642 trees of three common species. Mean concentrations of metals were generally an order of magnitude greater than in samples from a remote uncontaminated site. We found trivially small differences among tree species with respect to metal concentrations on bark, and in subsequent statistical analyses did not discriminate between them. We mapped the concentrations of As, Cd and Ni by lognormal universal kriging using parameters estimated by residual maximum likelihood ({\sc reml}). The concentrations of Ni and Cd were greatest close to a large steel works, their probable source, and declined markedly within 500~metres of it and from there more gradually over several kilometres. Arsenic was much more evenly distributed, probably as a result of locally mined coal burned in domestic fires for many years. Tree bark seems to integrate airborne pollution over time, and our findings show that sampling and analysing it are cost-effective means of mapping and identifying sources

    Identification of Aquitard Breaches Using Electrical Methods and Borehole Data in Shelby County, Tennessee

    Get PDF
    Inter-aquifer exchange of poor-quality water through hydrogeologic windows or breaches (with absent or thin low-permeability layer) in confining units can affect the water quality of confined water-supply aquifers. Identifying breach location and geometry is essential for protecting and managing water resources. Previous studies provide evidence for 16 breaches in the upper Claiborne confining unit (UCCU) overlying the Memphis aquifer, a regionally important water-supply aquifer, in Shelby County, Tennessee. Researchers suggest that the breaches may result from the paleo-channel incision during the Eocene sea-level fall and the Quaternary incision by western Tennessee tributaries to the Mississippi River. This study utilizes electrical resistivity (ER) and airborne electromagnetic (AEM) methods to understand the usability of the methods in subsurface stratigraphic delineation, paleochannel identification, and their relation to the aquitard breaches in Shelby County, USA. ER method was employed to analyze inverted resistivity profiles from two floodplain sites with varying electrode spacing (10m, 7m, 5m, and 2.5m). The results showed that halving the electrode spacing caused an upward shift of about 1.3-1.6 times in stratigraphic depth, while a one-fourth change had a lesser impact. The inverted resistivity profiles of Shelby Farms and Audubon Park revealed the presence of Eocene paleochannels, incised into the Eocene Cook Mountain Formation (CMF). An ER profile along Gray\u27s Creek indicated the CMF\u27s presence but inferred thinning towards the north. Two ER profiles and borehole investigations at Presidents’ Island revealed relatively impermeable strata despite AEM showing a potential breach based on intermediate resistivity (~70 Ωm) responses. The AEM data show with high confidence (resistivity \u3e 100 Ωm) the absence of a protective clay layer to the west of the survey area; however, the area is inaccessible. AEM data were acquired in northern Shelby County along roughly parallel flight lines, 0.5 km apart, and processed with proprietary and GeoScene3D software. The AEM profiles exhibiting high resistivity zones (\u3e70 Ωm) within a low resistive layer (\u3c30 \u3eΩm) are interpreted to indicate the presence of silty or sandy Cockfield Formation (CFF) sediments inset within the CMF. A potential breach identified using AEM in northeastern Shelby County was verified by ER and borehole data, showing the potential of AEM as a tool for identifying breaches and its relation to the Eocene paleo-channel incision. Kilometer-scale AEM profiles were interpreted by integrating geological data and geophysical logs from nearby boreholes, clarifying numerous potential breach locations in northern Shelby County. The results provide a template for future AEM studies and demonstrate the potential for developing more accurate hydrogeologic models. Additionally, the depth and network geometry of paleo-channels inferred from the AEM depth slice at 60 m above sea level offer valuable information regarding the paleogeographic and geologic evolution of the paleo-channel systems and warrant further investigation

    Mapping a waste disposal site using Tellus airborne geophysical data

    Get PDF
    Leakage of fluids from unregulated and/or poorly engineered waste disposal sites poses a significant direct risk to groundwater quality. Characterisation and monitoring of waste disposal sites and potentially associated groundwater contaminant plumes are generally invasive, time-consuming and expensive, particularly when the extent of the plume is unknown. This study examines the value of incorporating of Tellus and Tellus Border airborne electromagnetic (AEM) data into current assessment protocols for the characterisation and monitoring of contaminant sources and subsurface contaminant plumes. The findings demonstrate the feasibility of using airborne and ground-based non-invasive geophysical data as part of existing tiered assessment protocols for prioritising suspected sites and for guiding targeted intrusive investigations and subsequent remediation efforts

    Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries

    Get PDF
    Impermeable aquifer boundaries affect the flow of groundwater, transport of contaminants, and the drawdown of water levels in response to pumping. Hydraulic methods can detect the presence of such boundaries, but these methods are not suited for mapping complex, 3D geological bodies. Airborne electromagnetic (AEM) methods produce 3D geophysical images of the subsurface at depths relevant to most groundwater investigations. Interpreting a geophysical model requires supporting information, and hydraulic heads offer the most direct means of assessing the hydrostratigraphic function of interpreted geological units. This paper presents three examples of combined hydraulic and AEM analysis of impermeable boundaries in glacial deposits of eastern Nebraska, USA. Impermeable boundaries were detected in a long-term hydrograph from an observation well, a short-duration pumping test, and a water table map. AEM methods, including frequency-domain and time-domain AEM, successfully imaged the impermeable boundaries, providing additional details about the lateral extent of the geological bodies. Hydraulic head analysis can be used to verify the hydrostratigraphic interpretation of AEM, aid in the correlation of boundaries through areas of noisy AEM data, and inform the design of AEM surveys at local to regional scales

    Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    Get PDF
    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin well head and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically-instrumented BAe-146 research aircraft, were used to quantify the flow rate. Where appropriate, two different methods were used to calculate the flow rate: 1. Gaussian plume fitting in the vertical and 2. Direct integration of the plume. When both methods were used, they compared within 6 % of each other and within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s−1, decreasing to less than half that by the second flight on 17 April 2012. ÎŽ13CCH4 in the gas was found to be −43 ‰, implying that the gas source was unlikely to be from the main high-pressure high-temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high-pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 hours of sampling, with ÎŽ13CCH4 characterisation soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision-makers and assist rapid response-planning by government

    Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths

    Get PDF
    Soil contamination from industrial activities is a large problem in urban areas worldwide. Understanding the spreading of contamination to underlying aquifers is crucial to make adequate risk assessments and for designing remediation actions. A large part of the northern hemisphere has quaternary deposits consisting of glacial clayey till. The till often has a complex hydrogeological structure consisting of networks of fractures, sand stringers and sand lenses that each contribute to a transport network for water, free phase and dissolved contaminants. Thus, to determine the possible flow-paths of contaminants, the geology must be described in great detail. Normally, multiple boreholes would be drilled in order to describe the geology, but boreholes alone do not provide the needed resolution to map such sand lenses and their connectivity. Cross-borehole full-decay time-domain induced polarization (TDIP) is a new tool that allows for quantitatively mapping not only contrasts in bulk resistivity, but also contrasts in spectral IP parameters. We present a feasibility study with synthetic tests and a field application on a clayey moraine environment with embedded sand lenses, with hitherto unseen ground-truth verification. Indeed, the investigated area was above the water table, which allowed for digging out the entire area after the investigation for an unprecedented description of the lens interconnectivity. The TDIP data were acquired with a full-waveform acquisition at high sampling rate, signal-processed by harmonic denoising, background removal, and de-spiking, and subsequently the full-waveform data were stacked in log-increasing tapered gates (with 7 gates per decade). The resulting TDIP decays, with usable time-gates as early as two milliseconds, were inverted in terms of a re-parameterization of the Cole-Cole model. The inverted models of the field data show a remarkable delineation of the sand lenses/layers at the site, with structure in both the resistivity and the IP parameters matching the results from the ground-truthing. The synthetic examples show that in models both below and above the groundwater table, sand-lenses with thicknesses comparable to the vertical electrode spacing can be well resolved. This suggests that full-decay cross-borehole TDIP is an ideal tool for high-resolution sand-lens imaging

    Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    Get PDF
    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin wellhead and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically instrumented BAe-146 research aircraft were used to quantify the flow rate. The flow rate was calculated by assuming the plume may be modelled by a Gaussian distribution with two different solution methods: Gaussian fitting in the vertical and fitting with a fully mixed layer. When both solution methods were used they compared within 6% of each other, which was within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3±0.2kgCH4s-1, decreasing to less than half that by the second flight on 17 April 2012. ÎŽ13CCH4 in the gas was found to be -43‰, implying that the gas source was unlikely to be from the main high pressure, high temperature Elgin gas field at 5.5km depth, but more probably from the overlying Hod Formation at 4.2km depth. This was deemed to be smaller and more manageable than the high pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48h of sampling, with ÎŽ13CCH4 characterization soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision makers and assist rapid-response planning by government
    • 

    corecore